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The physical–chemical composition ofmultiple biomasses can be predicted from one single calibrationmodel in-
stead of compositional prediction conducted by individual models. In this work, multi-product models, involving
banana, coffee and coconut samples were built by partial least square regression (PLS) for ten different chemical
constituents (total lignin, klason lignin, acid insoluble lignin, acid soluble lignin, extractives, moisture, ash, glu-
cose, xylose and total sugars). The developed PLS models show satisfactory results, with relative error (RE%)
less than 20.00, except for ash and xylose models; ratio performance deviation (RPD) values above 4.4 and
range error ratio (RER) values above 4.00. Thismeans that all models are qualified for screening calibration. Prin-
cipal component analysis (PCA) was useful to demonstrate the possibility and the rationale for combining three
biomass residues into one calibration model. The results have shown the potential of NIR in combination with
chemometrics to quantify the chemical composition of feedstocks.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Near infrared spectroscopy (NIR) has received considerable
attention in the last years, as a tool for rapid, non-destructive, non-
expensive (1–5% of the wet chemistry procedure cost), of simple
application and that allows simultaneous assessment of multiple pa-
rameters of biomass composition [1,2]. The combination of NIR with
chemometric tools allowed the development of multivariate calibra-
tion models for the rapid analysis of the chemical composition of
feedstocks [3–7].

To ensure reliable prediction using the correlation of NIR spectra
with the reference data from biomass composition, the NIR methods
must be calibrated to an accurate primary reference analytical method.
For this initial calibration, advancedmultivariate models are developed,
and although the process cost is slightly increased (30% of the wet
chemistry procedure), they are still lower than the wet analysis [1]. Be-
sides, another question raised when building calibration models, is the
necessity to have a large variability of the calibration population and
of the chemical characteristic of the samples [8].

Most frequently this variability is reached by sampling over different
times and locations, what increases the process costs. To avoid such ad-
ditional costs, some authors have used different botanical fractions from
biomass to increase the variability in calibration models [8–10]. One
promising alternative for increasing sample variability would be to use

various feedstocks. However, literature [3,8] is scarce on the use of
multi-biomass calibrationmodels inwhich one singlemodel combining
different biomasses is developed.

According to Liu et al. [8] themain difficulty in building suchmodels
is associated to the dissimilarity among biomasses (different NIR spec-
tra). It is s not practical to develop a NIR calibration model with species
showing large dissimilarity. So, to ensure a good prediction and reliable
result, principal component analysis (PCA) was performed [11] to justi-
fy the development of a single calibrationmodel containing three differ-
ent biomasses. Besides, the usual statistical parameters (calibration and
validation plots, calibration and validation errors, among others) were
used to ensure the confidence of the models.

This study has shown that it is feasible that the arduous and costly
process of sample collection over different times and from different lo-
cations was effectively replaced in a simple manner to use different
types of biomass wastes to build single multivariate predictive models
to analyzemultiple constituents. Three quite distinct feedstocks (coffee,
banana and coconut) and also different botanic fractions of each plant
were considered. So, from the 10 different parameters (total lignin,
klason lignin, acid insoluble lignin, acid soluble lignin, extractives, mois-
ture, ash, glucose, xylose and total sugars) of physical–chemical compo-
sition analyzed, onemodel was built for each constituent, but useful for
three singular feedstocks.

It proves that the NIR associated to multivariate analysis can be
used for screening calibration and quality control to estimate physical–
chemical content in biomass residues.

Chemometrics and Intelligent Laboratory Systems 151 (2016) 108–114

E-mail address: magalerambo@mail.uft.edu.br (M.K.D. Rambo).

http://dx.doi.org/10.1016/j.chemolab.2015.12.013
0169-7439/© 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r .com/ locate /chemolab

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2015.12.013&domain=pdf
mailto:magalerambo@mail.uft.edu.br
http://dx.doi.org/10.1016/j.chemolab.2015.12.013
www.elsevier.com/locate/chemolab


2. Material and methods

2.1. Sample collection

A total of 104, 101 and 28 samples of banana, coffee and coconut res-
idues of different botanical parts were collected as illustrated in Fig. 1.

Also, among the different fractions, samples fromdifferent locations,
soils, cultivars, species and harvest time were sampled to ensure the
variability.

Of the 233 samples collected, not all were subjected to the wet
analysis steps. All the 233 samples were analyzed for moisture, extrac-
tive and ash. The analyses of soluble and insoluble lignin contents
were carried out for 137 samples, and for sugars only 94 samples
were analyzed.

2.2. Physical–chemical analysis

All the samples were dried, mill and then sieved to a homogeneous
particle size of 180–850 μm. The biomass analyses (all in duplicate) of
extractives, lignins and sugars were carried out using standard National
Renewable Energy Laboratory (NREL) methods [12,13]. For extractives
(NREL/TP-510-42619, 2008), the accelerated solvent extraction with
95% ethanol in a Dionex ASE 200 system (Thermo Fisher Scientific,
Waltham, MA, USA), was used. Acid hydrolysis (NREL/TP-510-42618,
2011) on the extracted samples was carried out with sulfuric acid
72% in a water bath in the first step, followed by hydrolysis for 1 h at
120 °C (in autoclave) and an acid concentration of 4%. In the hydrolysis
step the lignin (soluble and insoluble) and sugar contents were deter-
mined. The acid soluble lignin (ASL) content was determined by UV-
spectroscopy in a Shimadzu UV-1700 spectrometer (Shimadzu, Kyoto,
Japan), at wavelength of 205 nm. Insoluble lignins (klason lignin (KL)
and acid insoluble residue (AIR) were determined by gravimetry, and
sugars were determined by high pH anion exchange chromatogra-
phy with pulsed amperometric detection (HPAEC-PAD) for the
monossacharides.

The moisture (105 °C) and ash (600 °C) analyses were carried
out using ASTM 3173-87 [14] and ASTM D 3174-04 methods [15],
respectively.

2.3. Multivariate calibration models

The Vis-NIR spectra (400–2500 nm) were collected using a FOSS
XDS instrument (FOSS, Hillerød, Denmark). Each spectrum was gener-
ated by averaging 32 scans, with 0.5 nm of increment. Two spectra
were collected for each sample and the average spectrum was used
for data analysis.

Initially, all the 233 raw spectrawere submitted to PCAwith varimax
rotation to reveal the data structure and identify similarity/dissimilarity
among the three feedstocks.

Partial least squares regression (PLS1) was used to obtain themulti-
variate calibration models using the Unscrambler 10.2 (Camo Software,
Oslo, Norway). The data set was randomly split into two subsets: the
calibration set consisting of 75% of the samples and the external valida-
tion set with the remaining 25% of samples. The external validation set
may be used to determine the number of latent variables (LV), and is
often cited as the most realistic estimate, particularly of the prediction
errors. However, it requires a large amount of samples [16,17], such as
in the present study. These models were developed with the spectra
transformed by taking the Savitzky–Golay second (2D) derivative
using a second-order polynomial, with a window of 15 and 25 points
[18]. For the extractive model, the best results were obtained by com-
bining the standard normal variate (SNV) with first (1D) derivative
transformations using a second-order polynomial, with a window of 2
points [19].

For eachmodel, the coefficient of determination (R2cal and R2
val), the

root mean square error of calibration (RMSEC), the root mean square
error of prediction (RMSEP), the standard error of calibration (SEC),
the standard error of prediction (SEP) and the numbers of outliers and
LV, were obtained. The error vector, e, which is the difference between

Fig. 1. Botanical fractions sampling of (A) banana (B) coconut and (C) coffee.
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Fig. 2. Vis-NIR raw spectra (A) and Vis-NIR second derivative spectra.
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