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Traditional multivariate statistical process monitoring (MSPM) approaches aim at detecting deviations from the
routine operating condition. However, if the process remains well controlled by feedback controllers in spite of
some deviations, alarms triggered in this context become no longer necessary. In this regard, slow feature
analysis (SFA) has been recently applied to MSPM tasks by Shang et al. (2015), which allows for seperate distri-
butions of both nominal operating points and dynamic behaviors. Since a poor control performance is always
characterized by dynamics anomalies, one can discriminate nominal operating deviations with acceptable
control performance, from real faults that deserve more attentions, according to the temporal dynamics of
processes. In this work, we propose a new process monitoring scheme based upon probabilistic SFA (PSFA). Com-
pared to deterministic SFA, its probabilistic extension takes themeasurement noise into considerations and allows
for missing data imputation conveniently, which is beneficial for process monitoring. Apart from generic T2 and
SPE metrics for monitoring the operating point, a novel S2 statistics is considered for exclusively monitoring tem-
poral behaviors of processes. Two case studies are provided to show the efficacy of the proposed monitoring
approach.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, multivariate statistical process monitoring (MSPM)
approaches have played an indispensable role in chemical, semiconduc-
tor, and food industries, with the intent to furnish useful information
about process status, and further assist decision-making of operators
on maintainence actions [1,2,3]. The general principle of MSPM is to
first characterize the distribution of process data collected in nominal
operating conditions, and then raise alarms online once process mea-
surements transgress the routine data distribution. In particular, latent
variable modeling techniques, notably principal component analysis
(PCA), and partial least squares (PLS), are most-used statistical ones,
which account for data colinearity by projecting data into a low-
dimensional subspace [4,5,6,7,8].

Most traditional MSPM methods are prone to ideal assumptions for
routine process operations. Any deviation from the designed operating
condition will be signaled as faulty, no matter where the newly created
operating point lies. Under this circumstance, the process tends to shift
occasionally to a new operating point due to various impacts, including
both active set-point adjustments and passive disturbances; however,
thanks to the compensation of control systems, the process may get
well controlled as usual. On this occasion, the original routine condition

delineated by traditional MSPM approaches will be inevitably violated
and alarms get raised hereafter. Nonetheless, such alarms are essentially
unnecessary and even detrimental, for the reason that the process still
operates acceptably. For process practitioners, it is challenging to iden-
tify real faults of direct interest from a myriad of alarms, which entails
a considerable labor overhead to deal with.

To this end, a novel process monitoring scheme based on slow fea-
ture analysis (SFA) has been put forward recently [9], which tames
the aforementioned problem with effect. As an unsupervised model
proposed in 2002 [10], SFA basically extracts slowly varying compo-
nents that underlie multi-dimensional time series data, termed as slow
features. Thanks to the statistical properties of slow features, SFA is ame-
nable to individual approximations to both the steady distribution P(x)
and the temporal distribution P( _x), for which conventional statistical
models fall short of describing. For process monitoring purposes,
deviations from nominal operating point can be detected according to
the steady state distribution P(x), while process dynamics anomalies
can be identified by monitoring the disruptions of the temporal distri-
bution P( _x). The rationale of SFA-based monitoring strategy is to treat
process dynamics as an indicator of control performance. It is generally
recognized that real faults typically come with poor control perfor-
mance aswell as drastic dynamic behaviors. As a consequence, once de-
viations from routine operating conditions are detected by traditional
MSPM approaches, one can further examine whether the process is
under control or not by monitoring process dynamics P( _x), thereby
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removing unnecessary alarms. In this way, alarms on behalf of real
faults can be unmasked in a sophisticated manner, yielding interpret-
able fault information for process practitioners.

Recently, SFA has been generalized to its probabilistic version,
i.e., probabilistic SFA (PSFA) [11], which has been applied to dynamic
soft sensor modeling [12]. Different from its deterministic counterpart,
PSFA takes the form of linear Gaussian state-space models, in which
slow features are assumed as hidden states evolving as independent
first-order auto-regressive (AR1) processes a priori. Most importantly,
for monitoring system design, PSFA is potentially advantageous to de-
terministic SFA due to the following reasons. First, deterministic SFA
provides no allowance for measurement noises. It straightforwardly
computes the time difference _x of sequential measurements, which
will significantly amplify the noise effect with the presence of measure-
ment noises, resulting in an irrational estimation of slow features. In
contrast, measurement noises are taken into considerations by PSFA in
a fully probabilistic framework,which can bewellmitigated by applying
thewell-knownKalman filter to the inference of slow features [12]. Sec-
ond, missing data are fairly frequent in process measurements [13],
which will add significant difficulties in monitoring statistics design
[14]. For PSFA, it is convenient to impute missing data by means of
Kalman filter, which is beyond the capability of deterministic SFA.

In this regard, we develop a systematic monitoring scheme based on
PSFA, which enables a concurrent monitoring of both operating point
and process dynamics. Based on existing results with regard to PSFA,
in this article, we suggest using the Akaike information criterion (AIC)
to select the number of slow features in PSFA. In addition, the missing
data issue of PSFA is approached by investigating into properties of
Kalman filter equations. Although linear Gaussian state-space models
have already been used for process monitoring [15], the temporal dy-
namics of hidden states is not fully exploited in designing monitoring
statistics. The independence between probabilistic slow features allows
the definition of S2 statistics based on temporal derivatives to be clearly
made, aswell as the corresponding control limits to be readily obtained.
The novel S2 statistics abstracts dynamic behaviors of the process, in
addition to the T2 and SPE statistics that are responsible for describing
operating points. In the face of operating point deviations detected
by T2 and SPE statistics, the S2 control chart equips operators with
interpretable information about dynamic behaviors of the process,
which is especially beneficial for reducing unnecessary alarms in
industrial practice.

The layout of this article is given as follows. The methodological
details of SFA and the related monitoring scheme proposed in [9] are
briefly introduced in Section 2. The mathematical formulation of PSFA
is given in Section 3, and a model selection strategy is also suggested.
In Section 4, the online estimation issue of slow features, especially in
the case of missing data, is discussed, and the PSFA-based monitoring
policy is further presented. Sections 5 and 6 contain case studies to dem-
onstrate the efficacy of the proposed method, followed by conclusions
in the final section.

2. Slow feature analysis and the corresponding monitoring scheme

2.1. Slow feature analysis model

Assume that there are m input variables in total, amounting to an
m-dimensional input vector x∈ℝm. Mathematically, SFA decomposes
the original input x into a linear combination of slow features s:

x ¼ Rs: ð1Þ

Statistical properties of slow features can be represented as Efs jg ¼
Ef_s jg ¼ 0,Efsis jg ¼ δij; Ef_s2j g ¼ ω j ð1≤ j≤mÞ, where δij stands for the
Kronecker delta function [9,10]. It can be seen that SFA not only describes
the steady state distribution P(x) but also delineates the temporal

distribution P( _x) explicitly. This is just what generic statistical models
like PCA and independent component analysis (ICA) fail to achieve.

In order to derive an SFAmodel from time series data x(t), one could
resort to the SFA algorithm [10], which consists of two consecutive steps
of singular value decomposition (SVD). The input data x are assumed to
have zero mean in each dimension. By performing SVD decomposition
first on the covariance matrix of original input as EfxxTg ¼ UΛUT, the

original input x can be sphered as z ¼ Λ−1
2UTx such that EfzzTg ¼ Im .

Next, a second SVD on the covariance of _z yields Ef _z _zTg ¼ PΩPT ,
where Ω=diag{ω1,⋯ ,ωm} with diagonal elements arranged in an
ascending order. Finally, matrix R is calculated as

R ¼ UΛ1
2P ∈ℝm�m: ð2Þ

Slow features s can thus be computed ass ¼ PTz ¼ PTΛ‐12UTx ¼ R‐1x.
Therefore, the statistical properties of s can be easily calculated as

E ssT
� �¼ PTE zzT

� �
P ¼ I;

E ssT
� �¼ PTE zzT

� �
P ¼ Ω:

ð3Þ

In a nutshell, SFA simultaneously diagonalizes the covariance matri-
ces of both s and _s, as implied by (3). In particular, each SF sj is charac-

terized by its slowness that Ef_s2j g ¼ ω j ð1≤ j≤mÞ. A small ωj indicates
a slowly varying SF, and vice versa. According to different slowness of
SFs, s can be futher partitioned into two groups:

s ¼ sd
se

� �
;

sd ¼ PT
1:MΛ‐12UTx;

se ¼ PT
Mþ1ð Þ:mΛ‐12UTx;

ð4Þ

where P1:M denotes the firstM columns of P, and P(M+1):m denotes the
remaining ones. Accordingly, sd encapsulates M slowest features on
behalf of dominant variations of time series data, and se represents re-
siduals with fast variations (notice thatω1bω2b⋯ bωm). For determin-
ing M reasonably, Ref. [9] suggests an objective criterion based on the
slowness of input reconstructions.

2.2. Monitoring statistics design based on slow features

The Hotelling's T2 statistics is firstly applied to both sd and se tomea-
sure the steady variations of slow features. A pair of statistics are defined
on the basis of sd and se as [9]

T2 ¼ sTdsd � χ2
M ;

T2
e ¼ sTese � χ2

m−M;
ð5Þ

where the property EfssTg ¼ I is utilized. Besides, because the statistical

property of temporal variations is also described by Ef _s _sTg ¼ Ω, another
pair of statistics can be defined based on the temporal difference _s as: [9].

S2 ¼ _s
T
dΩ−1

d _sd �
M N2−2N
� �

N−1ð Þ N−M−1ð Þ FM;N−M−1;

S2e ¼ _s
T
eΩ−1

e _se �
m−Mð Þ N2−2N

� �
N−1ð Þ N−mþM−1ð Þ Fm−M;N−mþM−1;

ð6Þ

where N denotes the number of available process samples, Ωd=
diag{ω1,⋯ ,ωM} and Ωe=diag{ωM+1,⋯ ,ωm}.

Thanks to the statistical properties of slow features, both groups of
statistics have clear physical interpretations themselves. The T2 and Te

2

statistics abstract the steady position of operating conditions P( _x),
whereas S2 or Se

2 charts characterize temporal behaviors of process
data P( _x ). In practice, once either T2 or Te

2 exceeds the threshold
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