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A B S T R A C T

We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Pro-
gramming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical
engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup
in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are
used to evaluate the optimality criterion averaged over the prior distribution for the model parameters.
Mathematical programming techniques are then applied to solve the optimization problems. Because such
methods require the design space be discretized, we also evaluate the impact of the discretization scheme
on the generated design. We demonstrate the techniques for finding D-, A- and E-optimal designs using
design problems in biochemical engineering and show the method can also be directly applied to tackle
additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation pro-
duces highly efficient D-optimal designs but is computationally less efficient than that required for the SDP
formulation. The efficiencies of the generated designs from the two methods are generally very close and so
we recommend the SDP formulation in practice.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider finding model-based optimal designs of experiments
(M-bODE) for models that describe constitutive relations, commonly
used to represent physical properties or kinetic data. For M-bODE
problems, we have a given parametric model defined on a given
design space and a given design criterion; our task is to find the
number of design points required, where these design points are
and the number of replicates at these design points that optimally
meet the criterion. These design issues can be difficult to answer
even for some relatively simple model. A general observation is
that while there have been important advances made in solving
estimation problems, innovation in techniques for finding efficient
designs has not kept pace. In particular, it is helpful to explore
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the applicability of the increasing array of optimization numeri-
cal techniques used in other disciplines to solve statistical design
problems where analytical approaches are no longer feasible. Contin-
uing advances in algorithmic development is crucial to tackling more
complex and high dimensional design problems.

In the subfield of optimal design of experiments in Statistics, var-
ious algorithms have been developed and continually improved for
generating different types of optimal designs for algebraic models.
Some examples are those proposed by Fedorov (1972) [1], Wynn
(1972) [2], Mitchell (1974) [3] and, Gail and Kiefer (1980) [4].
Recently multiplicative algorithms seem to be gaining in popular-
ity [5,6]. Some of these algorithms are reviewed, compared and dis-
cussed in Cook and Nachtsheim (1982) [7] and Pronzato (2008) [8],
among others. A common issue is how to confirm the global opti-
mality of the design found from an algorithm. In selected situations,
verification can be accomplished using an equivalence theorem [9].
These algorithms typically require a starting design and a stopping
criterion to terminate the search for the optimal design. A common
stopping rule comes from the general equivalence theorem, which
we will use in this paper. Some algorithms also require that the space
be discretized and so the generated optimal design depends on the
size of the grid used in the search.
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Mathematical programming algorithms and solvers have been
used and continue to be widely used outside the field of statis-
tics. These tools have improved substantially over the last two
decades and they can solve complex high-dimensional optimization
problems accurately and efficiently. In particular, mathematical pro-
gramming approaches have been successfully employed to solve
M-bODE problems. Some examples of such tools are Semidefinite
Programming (SDP) [10–12], Semi Infinite Programming (SIP) [13],
Nonlinear Programming (NLP) [14,15], NLP combined with stochastic
procedures such as Genetic Algorithms [16,17], and Global Optimiza-
tion [18]. This paper describes and compares a few mathematical
programming tools for finding a variety of optimal designs used in
chemistry and chemical engineering problems.

Section 2 presents background for SDP and NLP formulations for
solving selected design problems, including Bayesian optimal design
problems. Section 3 describes SDP formulations for linear and non-
linear models with applications to chemical engineering problems.
Section 4 introduces the NLP formulations for finding D-optimal
designs and compares results with those from the SDP formulations
in Section 3. A conclusion is offered in Section 5.

2. Background

2.1. Preliminaries

Throughout we assume that we have a regression model with a
given mean function f(x, h) with differentiable components. The vec-
tor of regressors is x ∈ X ⊂ R

nx and X is a user-selected compact
design space. The continuous response is y and its mean response at
x is modeled by

E[y|x, h] = f (x, h), (1)

where the notation E[•] is the expectation of the argument in [•]. The
np × 1 vector of unknown model parameters h is assumed to belong
to a known np-dimensional cartesian box H = ×np

j=1[lj, uj] ∈ R
np with

each interval [lj, uj] representing the known plausible range of values
for the jth parameter. We assume that errors are homoscedastic but
when the responses have different variances depending on where
the x′s are selected to observe the responses, methods discussed here
can also apply and some brief results for such situations are also pre-
sented. Given a design criterion and a predetermined sample size, N,
the research question is how to select the N sets of values for the
covariates to observe the responses that maximize information in
some optimal way.

A common goal of the M-bODE problem is to find an optimal
design to maximize the information of the design of experiments
carried out. Optimality depends on the objective of the study. For
example, if predicting the responses at a few user-selected points in
the design space is the primary goal, then one chooses a set of val-
ues of covariates in the design that will minimize the variances of the
predicted responses at those points.

We focus on approximate design problems, which require determi-
nation of a probability measure over the given design space X. Such a
design n is characterized by the number of support points, their loca-
tions in the design space and the proportions of observations to be
taken at these points. If the sample size for the experiment is fixed at
N, the approximate design n is implemented by taking roughly N×wi

observations at the design point xi, i = 1, . . . , k, subject to each N×wi

is a positive integer and N × w1 + . . . + N × wk = N. In what is to
follow, we represent such a design by rows where each row shows
one of the design points and the last component in the row is the
weight at the support point. If there are nx covariates in the model,
the ith design point is xT

i = (xi,1, . . . , xi,nx ) and if there are k of them,

the design can be represented by k rows: (xT
i , wi), i ∈ {1, · · · , k} with∑k

i=1 wi = 1. In what is to follow, we let [k] = {1, · · · , k}.
An optimal approximate design optimizes a given criterion over

N, the space of all approximate designs on X. The key advantages
of working with approximate designs are that there is a unified
framework for finding optimal continuous designs for M-bODE prob-
lems and when the design criterion is a convex or concave functional
of the information matrix, equivalence theorems are available to pro-
vide a practical way to check the optimality of any design among all
continuous designs. In case the design is not optimal, the equivalence
theorem also provides a lower bound of the design efficiency of the
current design relative to the optimum (without the need to find the
optimum). In addition, there are algorithms for finding several types
of optimal approximate designs.

To fix ideas, we assume that all N responses have constant vari-
ances, are identically, independently and normally distributed and
there are ri replicates at each of the k points xi, i ∈ [k] with
xi = (xi,1, . . . , xi,nx )T. If yi,j is the jth. observation from xi, the total
log-likelihood function is

L(n, h) = − 1
2

k∑
i=1

ri log[2p] − 1
2

k∑
i=1

ri∑
ji=1

[yi,ji − f (xi, h)]2. (2)

The maximum likelihood estimator (MLE) for h is:

ĥMLE = arg min
h∈H

k∑
i=1

ri∑
ji=1

[yi,ji − f (xi, h)]2.

For an approximate k-point design with support points at
x1, x2, . . . , xk and weights w1, w2, . . . , wk, the elements of the normal-
ized FIM are the negative expectation of the second order derivatives
of the total log-likelihood with respect to the parameters given by

M(n, h) = −E

[
∂

∂h

(
∂L(n, h)

∂hT

)]
=

k∑
i=1

wiM(dxi , h), (3)

where M(dxi , h) is the FIM from the design dxi that puts all weight at
xi. Let X denotes the discretized space from X using q points equally
spaced in each dimension. The above information matrix is now
approximated by

∑
x∈X

M(dx, h)w(x)

where w is the selected probability measure on X so that the above
sum is equal to the integral in Eq. (3) as close as possible. We denote
the set of q points in X by [q] = {1, · · · , q}.

The volume of the asymptotic confidence region of h is propor-
tional to det[M−1/2(n, h)], and so maximizing the determinant by
choice of the design provides the smallest possible volume. Maxi-
mizing the information matrix in other ways leads to other criteria,
the most common ones are represented by a concave function of
the information matrix. For example, D-, A- and E-optimal designs
maximize each one of the following criteria, respectively:

nD = arg max
n∈N

{
log(det[M(n, h)])

}
, (4)

nA = arg max
n∈N

{
tr[M(n, h)−1]

}−1
, (5)

nE = arg max
n∈N

{
kmin[M(n, h)]

}
, (6)
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