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The performance of differential evolution (DE) is significantly influenced by the choice of crossover strategies;
therefore, a self-adaptive differential evolution algorithm with crossover strategies adaptation (CSA-SADE) is
proposed in this paper to enhance theperformance of DE. In CSA-SADE, the suitable control parameters,mutation
strategies, and crossover strategies can be achieved in different evolution stages. To demonstrate the effective-
ness of CSA-SADE, the proposed algorithm is compared with eight state-of-the-art evolutionary algorithms.
The simulation results indicate that CSA-SADE outperforms five improved DE algorithms and three non-DE ap-
proaches on a set of 25 CEC2005 benchmark functions. Additionally, the proposed algorithm is employed to es-
timate the kinetic parameters of mercury oxidation; the results show that CSA-SADE performs better than the
compared algorithms in this simulation example.
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1. Introduction

Differential evolution (DE) algorithm is a population-based and
competitive stochastic search technique which was proposed by Storn
and Price [1,2]. Over the past decades, DE has beenwidely used to tackle
a wide range of benchmark test functions and real-world application
problems [3,4]. However, the search performance of DE still needs to
be improved since modern optimization problems are becoming in-
creasingly complicated. DE performance is mainly dependent on three
control parameters (i.e., mutation control parameter F, crossover con-
trol parameter CR, and population size PS), mutation strategies, and
crossover strategies. It is difficult but significant to choose appropriate
control parameters and strategies in the design of DE algorithm. To en-
hance the performance of DE, several improved DE algorithms have
been proposed, such as a self-adaptive jDE [5], a self-adaptive DE
(SaDE) algorithm [6], a composite DE (CoDE) algorithm [7], a differen-
tial evolution with dynamic parameters selection (DE-DPS) [8], an
ensemble of mutation strategies and control parameters with DE
(EPSDE) algorithm [9], a modified differential evolution with p-best
crossover (MDE_pBX) [10], a differential evolution algorithm with
self-adaptive strategy and control parameters (SSCPDE) [11]. However,
to the best of our knowledge, only a few DE variants reported in the lit-
eratures adapt crossover strategies.

Generally, the exploration ability of the binomial crossover opera-
tion is better than that of the exponential crossover operation [12].
However, the exponential crossover operation is useful for solving
non-linear functions [13]. Therefore, to further improve the perfor-
mance of DE, a self-adaptive differential evolution with crossover strat-
egies adaptation (CSA-SADE) is proposed in the current study. In the
CSA-SADE algorithm, control parameters andmutation strategies adap-
tation methods are based on the work in Fan and Yan [11], and suitable
crossover strategy can be automatically adjusted through a self-
adaptive approach during the entire searchprocess. To judge the perfor-
mance of the proposed algorithm, 25 30- and 50-dimensional bench-
mark test functions, which are adopted from IEEE CEC2005 test sets
[14], are employed. The experimental results show that the overall per-
formance of the proposed algorithm is better than that of the compared
algorithms.

The remainder of this paper is organized as follows. Section 2 intro-
duces the DE algorithm. The related works of DE algorithm is reviewed
in Section 3. Section 4 introduces the proposed CSA-SADE algorithm.
The experimental results and crossover strategy adaptation analysis
are given in Section 5. The application of parameter estimation for ho-
mogeneous mercury oxidation is presented in Section 6. Finally,
Section 7 concludes the work of this paper.

2. Differential evolution algorithm

DE is a simple but yet a competitive evolutionary algorithm. It con-
tains three main operations, i.e., mutation, crossover, and selection.
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The vector which contains D optimized variables x1 ,x2 , ⋅ ⋅ ⋅ ,xD is de-
noted by x. xiG=[xi ,1G ,xi ,2G , ⋅ ⋅ ⋅xi ,DG ] denotes the ith solution (or individual)
in the Gth generation. The population of the Gth generation is denoted
byXG=[x1G,x2G, ⋅ ⋅ ⋅,xPSG ], which contains PS individuals. Theminimization
problem is expressed as follows:

f x�ð Þ ¼ min
xi ∈Ω

f xið Þ; ð1Þ

where f denotes the optimization function; xi is a D-dimensional
vector; x∗ is the global optimum solution; Ω⊆RD. For the bound-
constrained optimization problem, it has the boundary constraints,
i.e., x∈Ω,xj∈(xjlow,xjhigh), j=1,2 , ⋅ ⋅ ⋅ ,D, where xj

low and xj
high

are the lower and upper bounds of the jth variable of the in-
dividual, respectively. A D-dimensional space P0 is defined within the
region {(xjlow,xjhigh)j=1,2,⋯ ,D}.

The implementation steps of DE can be described as follows:

1) Initialization operation.

Determine the mutation control parameter F, crossover con-
trol parameter CR, population size PS, and maximum number of gener-
ations Gmax. Set the current generation G = 0. The initial individuals
xi0 , i=1,2, ⋅ ⋅ ⋅ ,PS is generated randomly in P0.

2) Mutation operation.

For each xiG in the parent population, the mutant individual viG+1 is
generated by mutation strategy. Some useful and famous mutation
strategies are listed as follows:

“DE=rand=1” : vGþ1
i ¼ xGr1 þ F � xGr2−xGr3

� �
; ð2Þ

“DE=rand=2” : vGþ1
i ¼ xGr1 þ F � xGr2−xGr3

� �
þ F � xGr4−xGr5

� �
; ð3Þ

“DE=current−to−best=1” : vGþ1
i ¼ xGi þ F � xGbest−xGi

� �þ F

� xGr1−xGr2
� �

; ð4Þ

“DE=current−to−best=2” : vGþ1
i ¼ xGi þ F � xGbest−xGi

� �þ F

� xGr1−xGr2þxGr3−xGr4
� �

; ð5Þ

“DE=rand−to−best=1” : vGþ1
i ¼ xGr1 þ F � xGbest−xGi

� �þ F

� xGr2−xGr3
� �

; ð6Þ

where r1, r2, r3, r4, and r5 are randomly chosen within the range [1, NP]
and are also different from the index i (i.e. r1≠r2≠r3≠r4≠r5≠ i); xbestG is
the individual vector with the best fitness value in the population at
generation G.

3) Crossover operation.

In DE, the binomial crossover and exponential crossover are two
common and useful strategies. For each individual xiG, a trial vector
ui
G+1 produced by the binomial crossover operation can be described

as follows:

uGþ1
ij ¼ vGþ1

ij ; Rj ≤ CR or j ¼ jrand
xGij ; otherwise

j ¼ 1;2; � � �;D:
(

ð7Þ

where Rj is a uniform random number in the range [0, 1], and jrand is a
randomly chosen integer within the range [1, D].

The exponential crossover operation can be defined as follows:

uGþ1
ij ¼ vGþ1

ij ; if j ¼ nh iD; nþ 1h iD; � � �; nþ L−1h iD
xGij ; otherwise

(
ð8Þ

where 〈〉D denotes a modulo function with modulus D. n is a random
number and L is an integer drawn from [1, D].

4) Selection operation.

The offspring ui
G+1 competes one-to-one with its parent xiG. The

evaluation operation is expressed as follows:

xGþ1
i ¼ uGþ1

i ; f uGþ1
i

� �
≤ f xGi
� �

xGi ; otherwise

�
ð9Þ

5) G = G + 1.
6) Repeat steps 2–5 until the number of generations is equal to Gmax.

3. Related works

The performance of DE is directly affected by the choices of the con-
trol parameters (i.e., F, CR, and PS) and strategies (i.e., mutation and
crossover strategies). When the properties of the optimization prob-
lems are unknown, it is difficult to choose appropriate control parame-
ters and strategies for DE algorithm. In the previous studies, DE
researchers [2,15–17] introduced several empirical guidelines for
selecting the control parameters and strategies to enhance the perfor-
mance of DE. However, these guidelines are usually lack of sufficient
justifications because they are based on specific experiments [6]. Mean-
while, constant parameter settings and strategy cannot adapt to differ-
ent evolution stages and optimization problems.

To avoid the need for problem-dependent parameter tuning and
strategy selection, researchers have proposed various self-adaptive DE
algorithms. For example, Liu and Lampinen [18] introduced a fuzzy
adaptive differential evolution (FADE) algorithm, in which appropriate
control parameters were produced by using fuzzy logic controllers.
Zaharie [19] used the population diversity to adjust control parameters.
Salman et al. [20] proposed a self-adaptive differential evolution (SDE)
algorithm that uses the ring neighborhood topology and employs a nor-
mal distribution function to generate the control parameters (i.e., F and
CR). Brest et al. [5] proposed a self-adaptive jDE wherein a self-adaptive
control mechanism is used to tune the control parameters (i.e., F and
CR) that are encoded into the individual. The experimental results indi-
cate that jDE performsbetter than FADE andother compared algorithms
on numerical benchmark problems. Qin et al. [6] introduced a self-
adaptive DE (SaDE) that uses successful experience to adaptively con-
trol the evolution of mutation strategies and their associated crossover
control parameter CR. Moreover, F is produced by a normal distribution
function. Zhang and Sanderson [21] proposed a new DE (JADE) which
uses a novel mutation strategy and adjust the control parameters
(i.e., F and CR) in an adaptive mechanism. Mallipeddi et al. [9] proposed
an ensemble of mutation strategies and control parameters with DE
(EPSDE). In EPSDE, choices of trial generation strategies and control pa-
rameters are based on their success experience in the past generations.
Wang et al. [7] introduced a composite DE (CoDE), in which three mu-
tation strategies are randomly combinedwith three fix control parame-
ter combinations. The results indicate that CoDE can balance between
exploration and exploitation capabilities. Fan and Yan [11] proposed a
differential evolution algorithm with self-adaptive strategy and control
parameter (SSCPDE) wherein the control parameters and mutation
strategies are automatically adjusted based on learning experience
at the last generation. The more relevant studies can be seen Ref.
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