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The objective of this paper is to enhance the quality of the process monitoring models by designing a training set
through an active learning approach. Although conventional process monitoring models are effective in many
manufacturing processes, these models falter when confronted by a set of training data with poor quality or a
small volume of training data. As the limitations of the monitoring models become increasingly obvious in face of
even more complex manufacturing processes, in this work, the active learning process monitoring (AL-PM)
model is developed. To design a good training set, Gaussian process (GP) models are first used to construct the re-
lationships between the score variables of the latent structure model and the designable process variables because
the GP model is capable of providing the accurate predictive mean and variance. The variance can quantify its pre-
diction uncertainty. Second, the uncertainty index is presented and utilized to adequately explore for which regions
the new data samples should be used to enhance the quality of the monitoring model. The proposed AL-PMmodel
can be applied to any types of latent structure-basedmonitoringmodels. Its effectiveness andpromising results have
been demonstrated by its applications to a numerical example and a penicillin benchmark process.
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1. Introduction

Process monitoring is one of the key techniques that improves the
competitiveness in industries. The objective of process monitoring is
to early detect and reduce the process variability in delays, process up-
sets, equipment malfunctions, improper operation procedures, incor-
rect estimates, etc., for quality control of an operating process because
these variabilities can cause deterioration of products [1]. Process mon-
itoring methodology is developed based on control charts. Control
charts are the graphical tools for continuously monitoring a process in
order to maintain the process in control [2]. Univariate control charts
were first developed by Shewhart based on the concept of statistical hy-
pothesis testing. In practice, a process usually involves a number of pro-
cess variables correlated with each other. Monitoring a multivariate
process using several univariate control charts would be inefficient.
Conventional multivariate control charting procedures are reasonably
effective as long as the number of variables to be monitored is not
very large. However, as the number of variables increase, detecting
and interpreting out-of-control situations becomes more difficult. To
overcome this weakness, a number of methods addressingmultivariate
statistical process control (MSPC) have been developed. Thesemethods
are often referred to as projection methods (or latent structure
methods). The basic idea of projection methods is that a highly

dimensional space, spanned by a number of measured variables, is
projected onto a model space of fewer dimensions [3]. The model
space is spanned by linear or nonlinear combinations of the original var-
iables so that “new fused” variables can be formed. The new fused var-
iables are often referred to as principal components or latent variables.
The main purpose of MSPC is to reduce the original variables to fewer
latent variables independent of each other and make them sufficient
to characterize the information contained in the data.

As discussed before, the different control charts developed based on
different characteristics of the operating process are routinely adapted.
In general, there are two steps to construct MSPC models. In Step I, the
in-control data are collected from the operating process, and in Step II,
the control charts are built upon the collected data. Then they are used
for continuous monitoring of the process over time. In Step I, in-control
data are picked up from the historical data in an existing process. The
trial procedures would be performed repeatedly until clean in-control
data are obtained. In Step II, control charts are constructed by the clean
in-control data set obtained in Step I; then they are used to correctly
and quickly detect out-of-control observations and to keep the process
in control. Most MSPC models and control charts were developed for
Step II applications in the past, and relatively few attempts have been
made to improve Step I applications. Thus, in most applications, it is as-
sumed that high volume datawith good quality are available in industrial
processes. This pragmatic and straightforward approach is used in many
applications although it is not ideal. In practice, the number of data for
Step 1 would be either large or small.
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When big data are available in the database, the designs based on the
whole data set are usually viewed by practitioners as monolithic and in-
flexible. As a result, the computational load is not reduced. The ability to
construct theMSPCmodel based on the large data set is limited to the ca-
pacity of the computer. Difficulties occur in the analysis of the data sets
with very large observations. Reduction of the size of the training set is
necessary if the observations are huge. The size of the data selected to
correctly estimate the parameters of an MSPC model would vary from
one problem to another. The process of the sample reduction is also
called sample selection. Many sample selection methods have been de-
veloped, such as probability sample selection and nonprobability sample
selection. In probability sample selection methods, every sample in the
population has a chance of being selected, and this probability can be ac-
curately determined. Several methods that determine the probability
have been proposed for different applications, such as simple random,
systematic random, stratified random, and cluster random methods [4].
Nonprobability sample selection methods are based on the population
of interest. The concept of the condensed nearest neighbor algorithm
and its extensions [5,6] is based on the predictive performance or the
error of a model. The pattern by the ordered projections method [7] is
used to select only some border samples and eliminate the samples
that are not on the boundaries of the regions where they belong.
Generalized-modified Chang's algorithm [8] split an original data set
into several clusters and then centers of the clusters were selected. The
best known uniform selection in chemometrics is the Kennard–Stone
(KS) algorithm [9]. It maximizes the minimal Euclidean distances
between the selected samples and the remaining samples. It selects a
subset of samples uniformly distributed in the sample space. However,
although the sample selection methods can select the good representa-
tive samples from the historical data set, the MPSC model based on the
samples still cannot represent the current operating process well be-
cause there may not be enough favorable samples in the current histor-
ical set to describe the required process characteristics.

In reality, the story is quite different for some manufacturers in
polymer, pharmaceutical, semiconductor, and biochemical industries
though. Data volumes are low, and the branch of knowledge is extreme-
ly high-tech. On-line quality measurements, like infrared analyzers, ul-
traviolet, and visible-radiation analyzers, are generally much more
expensive. Because of their big costs and inspecting time, the use of
the on-line analyzer is normally decided based on process economics.
Thus, product qualities are often analyzed off-line and infrequently. In
this situation, the collected data may not contain the entire process
characteristics. The statistical monitoring models constructed directly
upon the collected data cannot function well. The detections using the
established monitoring models are likely to get false alarms.

Traditionally, trial-and-error approaches were used to find new
samples from the database. If data were not available, it was further re-
quired to design and execute the experiment. The trial-and-error
methods were time consuming, expensive, and even self-defeating.
The samples are expected to provide themaximum amount of informa-
tion so that the control charts can be constructed effectively. To over-
come the problem of the traditional methods, an active learning
strategy should be proposed to obtain efficient samples. It has been
proved useful in the planning of experiments. Such an approach, in
fact, has received considerable attention from the engineering and sta-
tistic communities for its advantages of flexibility and adaptability. For
example, the efficient global optimization algorithmwas used to derive
sequential designs for the optimization of deterministic simulation
models. It chose the data points at each step to maximize the improve-
ment [10]. An adaptive strategy based on an explicit trade-off between
reduction in global uncertainty and exploration of region of interestwas
proposed to accurately approximate the target region [11]. Among
these designs of experimental approaches, Bayesian inference attracted
more attention. A Bayesian approachwas used to derive sequentially in-
tegrated mean square error designs [12]. Bayesian inference based on
the probability theory treats variables as stochastic variables. That is, if

the predictive distribution at a testing sample point is tightly packed,
themodel quality at this point is high; on the other hand, the prediction
distribution spreading widely over a range of values indicates that the
model quality at this point is highly uncertain. Thus, to enhance the
model quality, Bayesian inference can be used to select data in the re-
gion of high uncertainty.

In this paper, the active learning processmonitoring (AL-PM)model
is proposed. This model integrates the conventionalMSPCwith a super-
visedGaussianprocess (GP)model. The rest of this paper is organized as
follows. Section 2 revisits the conventionalMSPCmodelswith the latent
structure and gives a uniform expression of somemost popularmodels.
A numerical example is used to describe the limitationswhen the train-
ingdata are directly applied toMSPCmodels. In Section 3, the concept of
active learning is first introduced, and the GP model definition and its
training method are reviewed. Then the AL-PM model is proposed.
The GP model is used to construct the relationships between the score
variables of the latent structure model and the designable process vari-
ables. The uncertainty index utilizing prediction uncertainty of the GP
model can adequately explore for which regions the new data samples
should be used to enhance the quality of themonitoringmodel. The re-
sults of a numerical example and a penicillin benchmark process are
presented and discussed in Section 4. In Section 5, concluding remarks
are made.

2. Revisit of the latent structure-based statisticalmonitoringmodels
and their characteristics

The basis of the MSPC methods is to simplify a monitoring system
into a latent structuremethod by projecting data onto the lower dimen-
sional subspace and then further analysis would be made. The dimen-
sionality reduction or the decoupling process is a natural way in
multivariate processmonitoring. Several optimal dimensionality reduc-
tion techniques for latent structure models have been heavily studied
and applied to chemical process monitoring over the past two decades
[13,14]. The latent structure method leverages the interaction between
the variables and the monitoring changes in the correlation structure of
the variable. The identification of a latent structure method involves
finding the fused variables that best describe the major features of the
data set constituted by the measured variables, and the fused variables
span only the true dimension of the process. Thus, correlated data are
not a difficulty but a necessity for latent structure methods. The investi-
gation of sample covariance matrices (A) can be unified as

A ¼ TPT þ ~T~P
T ð1Þ

and A∈ℜN×M is a transformation of X,

A ¼ X for PCA;PPCA; ICA
K for KPCA

�
ð2Þ

where X∈ℜN×M is a sampling matrix in which N is number of samples
and M is the number of variables. Assume that X is scaled to zero
mean. PCA is mainly used in the processes with linear and steady state.
PPCAmodels are the probabilistic formulation of PCAmodels,which pro-
vide a single statistic for fault detection [15,16]. Independent component
analysis (ICA) decomposes observed data into linear combinations of
statistically independent components, which can characterize non-
Gaussian characteristics of processes [17,18]. For nonlinear processes,
kernel-based PCA (KPCA) can be used to improve the nonlinear ability
of normal PCA through using the kernel function [19]. The basic idea of
KPCA is to first map the nonlinear input space into a linear
feature space and then to compute PCA in that feature space [20]. In
Eq. (2), K ¼ K−KE−EKþ EKE and Eij=1/N. Kij=k(xi,xj) is the entry
in the kernel matrixK. The application ofMSPC inmonitoring batch pro-
cess data was also developed, like multiway PCA (MPCA) [21], multiple-
subspace PCA [22], etc.
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