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A B S T R A C T

Contamination of ground water by industrial chemicals presents a major environmental and health problem.
Soil sorption plays an important role in the transport and movement of such pollutant chemicals. In this
study, proteochemometric (PCM) modeling was used to unravel the origins of interactions of 17 phthalic
acid esters (PAEs) against 3 soil types by predicting the organic carbon content normalized sorption coeffi-
cient (logKoc) values as a function of fingerprint descriptors of 17 PAEs and physical and textural properties
of 3 soils. The results showed that PCM models provided excellent predictivity (R2 = 0.94, Q2 = 0.89,Q2

Ext =
0.85). In further validation of the model, our proposed PCM model was assessed by leave-one-compound-
out (Q2

LOCO = 0.86) and leave-one-soil-out (Q2
LOSO = 0.86) cross-validations. The transparency of the PCM

model allowed interpretation of the underlying importance of descriptors, which potentially contributes to
a better understanding on the outcome of PAEs in the environment. A thorough analysis of descriptor impor-
tance revealed the contribution of secondary carbon atoms on the hydrophobicity and flexibility of PAEs as
significant properties in influencing the soil sorption capacity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Phthalic acid esters (PAEs) are widely used as plasticizers [1]
and defoaming agents [2] in industrial production. Owing to their
aromatic nature, PAEs are commonly used in consumer products [3].
In spite of their wide usage, they are nonetheless, hazardous to
human health. Because PAEs are not covalently bound to plastic poly-
mers, they can be easily leached to the environment during and after
the manufacturing process. Several studies have shown that PAEs
disturb the hormonal system as well as vital organs [4,5]. Owing to its
negative impacts on mammal health, understanding the soil sorption
behavior of PAEs has become an important environmental issue.

Soil sorption is the process of removing solute from an undersat-
urated solution to a solid phase, and as such plays a dominant role
in determining the destiny of PAEs in the ecosystem [6]. The soil
sorption coefficient, otherwise known as the normalized soil organic
carbon-water partition coefficient (logKoc), is a valuable parameter
for assessing the soil sorption behavior. Two factors that govern the
soil sorption behavior of PAEs include the physiochemical properties
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of PAEs and the properties of soils [7]. Particularly, several studies
have shown that physicochemical properties of PAEs affect soil sorp-
tion such as the alkyl side chain length [8] and polarity [9] on soil
sorption of PAEs. As for soils, low carbon content and pH [10], low
salinity of soils [11] and the presence of dissolved organic matter
(DOM) [12] have all been shown to decrease soil sorption.

Quantitative-structure activity/property relationship (QSAR/
QSPR) is a powerful and robust approach for predicting the bio-
logical activity and chemical property as a function of molecular
descriptors for compounds of interest [13,14,15,16]. QSPR modeling
has been extensively used for predicting the soil sorption behavior
of compounds [17,18,19,20,21,22,23,24,25,26,27,28]. However, the
inherent limitation of these constructed QSPR models is that they
only take the physicochemical property of the compounds into
consideration while not considering soil properties.

Recently, Yang et al. [28] proposed a QSPR model using multiple
linear regression and descriptors derived from soil sorption behavior
whereby the response value was obtained by averaging the logKoc

from the three types of soil under investigation. This work provided
an acceptable predictive result. However, it is well known that
conventional QSAR [28] could not simultaneously analyze the infor-
mation for a series of compounds against a series of soils. In spite
of this, there are ample opportunities for further improvements
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by finding ways to unravel the origins of interactions of 17
phthalic acid esters (PAEs) against 3 soil types by predicting the
logKoc values.

Proteochemometrics (PCM) is a computational approach that
can alleviate these limitations because it is capable of quanti-
fying the relationship of several ligands and several proteins in
one unified model [29,30]. PCM had previously been employed to
study the interaction of ligands against a wide range of proteins
including among others the melanocortin receptors [31], G-protein
coupled receptors [32], HIV-1 proteases [33], major histocompatibil-
ity complex proteins [34], cytochrome P450 enzymes [35], protein
kinases [36] and green fluorescent proteins [37].

This study extends the use of PCM from the typical protein–
ligand space onto the compound-soil space and in doing so allows
the simultaneous consideration of all 3 soil types in a single unified
model instead of three separate QSAR models as previously pro-
posed. The response variable logKoc was predicted as a function of
the properties of 17 PAEs and 3 soils. Important features were iden-
tified and used to provide insights into the underlying basis of soil
sorption behavior.

2. Materials and methods

2.1. Dataset

A dataset describing the sorption behavior of 17 PAEs against
3 soil types was obtained from the work of Yang et al. [28] as
shown in Fig. 1. The PAEs are based on the 1,2-benzenedicarboxylic
acid chemotype containing different substituents at the ortho posi-
tion. Soils were from different regions of China, namely NanChang
Honggutan (NH), NanJing Xianlin (NX), and JaiXing Xiuzhou (JX). The
soil organic carbon content normalized sorption coefficients (logKoc)
were determined by batch equilibration experiments to approximate
the behavior of soil sorption. The dataset used in this study is pub-
licly available on figshare at https://dx.doi.org/10.6084/m9.figshare.
2058933.v1.

2.2. Description of compounds

As fingerprints are easy to calculate, informative and inter-
pretable [38], a set of 307 substructure fingerprint count was cal-
culated using the PaDEL software [39] to represent the 17 PAEs.
In situations when two or more descriptors were highly corre-
lated by more than 0.9, only one of them was retained. Finally,
the remaining descriptors (Fig. 2) consisting of SubFPC2 (secondary
carbon), SubFPC307 (chiral center specified), SubFPC295 (C ONS
bond), SubFPC3 (tertiary carbon) and SubFPC5 (alkene) were further
used for multivariate analysis.

2.3. Description of soils

Yang et al. [28] previously determined the following 8 properties
for the 3 soil types in their investigation on the sorption behavior of
PAEs: organic carbon content (SOC), pH, clay content (clay), cation
exchange capacity (CEC), sand content (sand), silt content (silt), soil
nitrogen content (TN), and moisture (MC). These properties are used
in this study as soil descriptors.

2.4. Computation of interaction cross-terms

Descriptor blocks for both compounds (C) and soils (S), as derived
from the aforementioned section, are comprised of 5 and 8 descrip-
tors, respectively. Cross-terms for compound–soil interaction (C × S)
were obtained by computing the products of compound and soil
descriptors; thereby giving rise to 5 × 8 = 40 cross-terms.

In addition, cross-terms for self-interaction of compounds (C × C)
and soils (S × S) were computed according to the lower triangular
matrix as described below:

N × (N − 1)
2

(1)

where N is the number of compound or soil descriptors. Applying
the above equation resulted in 8 × (8 − 1) × 0.5 = 28S × S
cross-terms. Meanwhile, after removing non-informative descriptors
(having standard deviation equal to zero) from the total number of
cross-terms for self-interaction of compounds resulted in 4 C × C
cross-terms.

2.5. PCM modeling

Five descriptor blocks (e.g., C, S, C × S, C × C and S × S) containing a
total of 85 descriptors were utilized for multivariate analysis. These
descriptors were subjected to mean centering followed by scaling to
unit variance.

The PCM modeling performed herein is based on partial least
squares (PLS) regression. PLS establishes the correlation between the
matrix of predictors or independent variables X (i.e., all descriptors
and cross-terms) that have high variance and great correlation with
the response variable Y (logKoc). The approximation of the correla-
tion is achieved by simultaneously projecting the X and Y matrices
onto lower dimensional spaces that are represented by PLS compo-
nents. More details of PLS modeling is provided elsewhere [40,41].

A total of 10 PCM models for predicting the logKoc value was
formulated using various combinations of descriptor blocks as sum-
marized in Tables 1 and 2. The constructed model using all descriptor
blocks can be expressed as follows:

log Koc =
5∑

c=1

(coeffc × xc) +
8∑

c=1

(coeffs × xs) +
40∑

c=1,s=1

(coeffc,s × xc × xs)

+
4∑

c1=1,c2=1

(coeffc1,c2 × xc1 × xc2) +
28∑

s1=1,s2=1

(coeffs1,s2 × xs1 × xs2) + 4

(2)

where 4 is the intercept term. Owing to size heterogeneity for each
descriptor block and cross-term, block-scaling

(
1√
N

)
was applied

on the five descriptor blocks in order to avoid a situation where
the block having the largest number of descriptors outweighs the
small ones. The PCM models were implemented using the R package
plsdepot [42].

2.6. Validation of PCM models

Validation of predictive models are crucial for any empirical
modeling. The goodness-of-fit and goodness-of-prediction are com-
monly used to evaluate the robustness of a PCM model. The former
is characterized by the coefficient of determination (R2

Tr) and root
mean square error (RMSETr) while the latter is characterized by
the coefficient of determination (Q2

CV ) and root mean square error
(RMSECV) where both can be obtained from cross-validation [14].
Although, a high Q2

CV value is frequently used as one of the crite-
rion for robust models, it is not a definitive condition for obtaining
a robust model [43]. External validation is important for assessing
the ability of any models to afford predictions for unknown data (i.e.,
uncharacterized compound) [43]. Thus, the dataset in this study was
divided into internal (75%) and external (25%) sets where the former
was used to construct a model and subjected to a conventional five-
fold cross-validation (5-fold CV) while the external set was used to
externally assess the model using Q2

Ext and RMSEExt. The external and
internal sets were subjected to 20 rounds of random splits. To further
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