Chemometrics and Intelligent Laboratory Systems 151 (2016) 228-244

=
CHEMOMETRICS
I @ anD INTELLIGENT

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

journal homepage: www.elsevier.com/locate/chemolab

Dual learning-based online ensemble regression approach for adaptive
soft sensor modeling of nonlinear time-varying processes

@ CrossMark

Huaiping Jin ?, Xiangguang Chen **, Li Wang ?, Kai Yang *", Lei Wu ?

2 Department of Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
b Beijing Research & Design Institute of Rubber Industry, Beijing 100081, People's Republic of China

ARTICLE INFO ABSTRACT

Article history:

Received 25 September 2015

Received in revised form 3 December 2015
Accepted 10 January 2016

Available online 18 January 2016

Soft sensors have been widely used to estimate difficult-to-measure variables in the process industry. However,
the nonlinear nature and time-varying behavior of many processes pose significant challenges for accurate qual-
ity prediction. Thus a novel adaptive soft sensor, referred to as dual learning-based online ensemble regression
(DLOER), is proposed for nonlinear time-varying processes. To deal with process nonlinearity, just-in-time
(JIT) learning is used to build local domains and local models simultaneously while statistical hypothesis testing
is employed to remove redundant local models. As a result, multiple diverse local models are constructed for
characterizing various process states. Then the posterior probabilities of each test sample with respect to different
local models are estimated through Bayesian inference and further set as adaptive weights to combine local pre-
dictions into a final output. Moreover, DLOER is equipped with incremental local learning and JIT learning for
model adaptation, which enables recursive adaptation and online inclusion of local models, respectively.
Therefore, process nonlinearity can be well handled under the local learning framework while both gradual
and abrupt changes of processes can be efficiently addressed using the dual learning-based adaptation
mechanism. The effectiveness of the DLOER approach is demonstrated through a fed-batch penicillin fermenta-
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tion process.
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1. Introduction

The reliable and realtime measurements of quality variables play an
important role in process monitoring, control, stability and improving
product quality. However, in the process industry, there remain some
difficult-to-measure variables, which can be determined either at low
sampling rates or through offline analysis only. Even if online analyzers
are available, they still encounter limitations such as unacceptable cost
and heavy maintenance load. Over the last decade, soft sensor technol-
ogy, as a promising solution towards online prediction, has attracted
fast-growing interests in both academia and process industries [1-5].
By using a soft sensor model between these easy-to-measure variables
and those difficult-to-measure ones, the key process variables can be es-
timated online.

Traditionally, soft sensors are based on first principles models.
Nevertheless, this class of methods requires in-depth process knowl-
edge and tremendous effort for model development. Alternatively, the
data-driven soft sensors gained growing popularity in the process in-
dustry, which is due to the increasing availability of operating data, as
well as the prosperity of computational learning techniques to process
the data [6-9]. The most common data-driven soft sensors are based

* Corresponding author. Tel.: +86 13601333018; fax: 486 10 68914662.
E-mail addresses: jinhuaiping@gmail.com (H. Jin), xgc1@bit.edu.cn (X. Chen).

http://dx.doi.org/10.1016/j.chemolab.2016.01.009
0169-7439/© 2016 Elsevier B.V. All rights reserved.

on multivariate statistical techniques, such as principal component re-
gression (PCR) [10-12], partial least squares (PLS) [13-15] and inde-
pendent component regression (ICR) [16-17]. Meanwhile, the
machine learning methods, such as artificial neural networks (ANN)
[18-20], support vector regression (SVR) [21-23], and Gaussian process
regression (GPR) [24-26], have also been accepted as useful tools for
soft sensor development. Despite the availability of a variety of soft sen-
sor methods, it remains challenging to develop high-performance soft
sensors, because industrial processes often exhibit nonlinear and
time-varying behaviors.

To address process nonlinearity, a straightforward strategy is to use
nonlinear modeling techniques such as ANN, SVR, and GPR. However,
such approaches are usually based on global models given the underly-
ing assumption of a constant operating phase/mode throughout the
process. In practice, industrial processes are often characterized by mul-
tiple operating phases/modes [27-30]. In such a case, global models fail
to function well. Thus considerable efforts have been paid to local learn-
ing, which employs the “divide and rule” philosophy. By exploiting the
local learning framework, the complex nonlinear relationship between
input and output data can be well described by multiple local valid
models, each of which is responsible for one specific operating region
of the process.

In general, one can distinguish three classes of local learning
methods, namely JIT learning [31,32], multi-model modeling [33,34],
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and ensemble learning [35,36]. JIT learning can cope with process non-
linear by building local models repeatedly during online operation.
However, it encounters heavy online computational load and difficulties
in defining appropriate similarity measures. An alternative local learn-
ing method is the multi-model approach, where a model library is de-
fined as a collection of local models. Then the output variable can be
predicted using the corresponding local model relevant to the query
state. Though multiple localized models can handle multiphase/
multimode operations, they may not efficiently characterize the tran-
sient dynamics between phases or modes. This problem can be solved
using ensemble learning methods, in which local models are first
trained and then combined to provide an overall output estimate.

Apart from process nonlinearity, another crucial problem remaining
to be solved for soft sensor development is how to deal with the time-
varying behavior of processes and maintain high model performance
for a long period of time. This problem is also known as model mainte-
nance or adaptation [37,38], and has been even recognized as the most
important problem of current soft sensors, as revealed in a recent ques-
tionnaire survey [39]. Even if an accurate soft sensor model can be built
from the training data, its prediction accuracy will deteriorate over time.
The factors contributing to such behavior include changes of raw mate-
rials, catalyzing performance loss, sensor drift, abrasion of mechanical
components and external environmental changes.

To reduce degradation, various adaptation mechanisms have been
proposed to update soft sensors, such as moving window (MW) [40,41],
recursive adaptation (RA) [42-44], and JIT learning [45,46]. Generally,
these adaptation strategies can be categorized into two groups [47]:
temporal adaptation and spatial adaptation methods. MW and RA belong
to the former type since they update the soft sensor model using the
newest data. In contrast, JIT learning is classified into the spatial adapta-
tion because it builds a new local model from scratch using the most rel-
evant data in the data space.

The temporal adaptation mechanisms assume that the current pro-
cess state is highly similar to the newest state, which enables to effi-
ciently handle gradual changes of processes. Nevertheless, they cannot
function well when abrupt changes occur, because in such situation
the process characteristics change rapidly from one state to another.
In comparison, the spatial adaptation methods allow dealing with
abrupt changes in process characteristics because they utilize the most
relevant data from a database covering a wide range of operating condi-
tions. However, the temporal relationship of samples is ignored in spa-
tial adaptation models. In practical applications, it is often the case that
both gradual and abrupt changes exist simultaneously. It is therefore
appealing to combine the temporal and spatial adaptation mechanisms
to update soft sensor models, thereby addressing both types of time-
varying behavior.

To allow handling nonlinearity and time-varying issues simulta-
neously, in recent years, there has been an increasing interest in the in-
tegration of local learning and adaptation capability [25,26,48-53]. By
using such hybrid strategies, process nonlinearity can be well handled
under local learning framework while time-varying behavior can be
captured through online model adaptation. Therefore, this paper aims
to develop a local learning based adaptive soft sensor for nonlinear
time-varying processes. Among those aforementioned local learning
methods, only the ensemble learning is involved in this work for two
reasons. On one hand, once an initial ensemble model is built from the
training data, the online prediction can be conducted very fast. On the
other hand, in terms of the prediction robustness, the ensemble
methods outperform other local learning methods that only use one sin-
gle local model for each run of prediction. However, developing a high-
performance adaptive ensemble soft sensor needs to well solve three
critical issues: How are the local domains constructed? How are the
local models combined? How is the ensemble model updated?

The first key task in ensemble learning is to construct local domains
so that local models can be built from the corresponding data subsets.
The most frequently used approaches for this purpose are the clustering

methods, such as fuzzy c-means (FCM) [34,54] and Gaussian mixture
models (GMM) [25,33]. However, there are several issues associated
with such partition methods. First, the number of clusters needs to be
preset, whereas in practice the precise quantitative information of pro-
cess divisions is often unavailable. Second, it is difficult to include new
local domains online without retraining from scratch, thus limiting its
ability to capture new process states. Especially, when significant varia-
tions of processes occur, the division results are no longer valid. Thus the
capability of launching new local model online is highly desirable for the
ensemble models. Third, the best clustering results in terms of the data
distribution do not mean the best partitions for ensemble learning from
the point of view of the prediction performance.

Another method for process divisions is the moving window (MW),
which builds local domains by collecting successive samples included in
a certain period of time [10,55]. The rationale of this strategy lies in the
assumption of highly similar correlation among variables within a time
window. By repeatedly shifting the window forward, a large number of
windows can be constructed. However, severe redundancy may exist
between windows. To address this issue, statistical hypothesis testing
such as Student's t-test can be employed to evaluate whether two win-
dows belong to the same process state or not [48,50,51]. The redundant
windows can be included to the same local domain or discarded direct-
ly. However, a potential limitation of the MW approach is that local do-
main data are selected only based on time relevance and thus samples
within a certain window may contain multiple distinct process states,
especially when abrupt changes occur and the window size is not set
appropriately.

The next crucial operation for ensemble modeling is the combina-
tion of local models. Given the input samples, each of local models can
make predictions of the target variable. Then these local predictions
have to be integrated into an overall estimation of the ensemble
model. Traditionally, local models are combined by building a linear or
nonlinear relationship between the local outputs and the final output
based on the training data. Examples of such ensemble methods include
simple mean, trimmed mean, weighted mean based on the training ac-
curacy, PLS coefficients, and ANN model [2,16,56,57]. Nevertheless,
these methods are nonadaptive, and the resulting combination weights
or weighting models remain unchanged once deployed into real-life op-
eration. One significant limitation of such nonadaptive combination ap-
proaches is that they are prone to assign larger weights to the models
that give better prediction on the training data. In fact, if some of the
models are severely overfitted on the training data, the impact effect
of overfitting problem could be further amplified by these models
assigned large weights. Consequently, the generalization capability of
the ensemble models for new test data may deteriorate.

As opposed to the nonadaptive ensemble methods, adaptive
weighting strategies are promising since the importance of local models
is dynamically determined based on the relevance between the query
data and local models. So far, several frequently used indices for adap-
tive weighting are summarized as follows: (i) distances between the
query data and centers of local domains [58]; (ii) posterior probabilities
of the query data with respect to different local models [23,25,33];
(iii) fuzzy memberships [34]; prediction uncertainty [24,54]; (iv) pre-
diction accuracy on the recently measured samples [49,52,53] or on
the similar samples to the query data [50,51]; and (v) monitoring
statistics [17].

Another major concern with the ensemble soft sensors is to incorpo-
rate adaptation mechanisms into the offline built ensemble models. The
ensemble learning framework allows performing flexible adaptations,
which can combine a subset of the following strategies [36,37]:
(i) adaptation of the models' parameters; (ii) adaptation of the combina-
tion weights; and (iii) launching new models. Nevertheless, many of the
current adaptive ensemble soft sensors only pay attention to the former
two adaptation operations, where the temporal adaptation mechanisms
such as recursive strategy and MW approach are usually used for model
updating. As for the combination weights, the aforementioned adaptive



Download English Version:

https://daneshyari.com/en/article/1179369

Download Persian Version:

https://daneshyari.com/article/1179369

Daneshyari.com


https://daneshyari.com/en/article/1179369
https://daneshyari.com/article/1179369
https://daneshyari.com

