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Interlaboratory comparisons are an important check of the quality of a measurement technique. In this paperwe
examine the accelerator mass spectrometry (AMS)measurement of 41Ca, an unstable isotope of calcium that has
emerged as a valuable tracer for a variety of studies.Weuse a Bayesian framework to explore the quality and con-
sistency of the AMS measurements made by Lawrence Livermore National Laboratory (LLNL) and the Purdue
Rare Isotope Measurement Laboratory (PRIME Lab). This framework should be generalizable to other
interlaboratory comparisons. The laboratories measured 47 samples, with each lab measuring an aliquot of
each sample. The Bayesian approach allowed us to derive a probability distribution for four parameters reflecting
the quality of the data, and to then address the following questions: (1) Are the results from the two labs consis-
tent? (2) Are theuncertainties quoted by the two labs reasonable?Wefind that any consistent offset between the
two labs is negligible, and that the uncertainties may be slightly underestimated.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Interlaboratory comparisons, in which aliquots of the same samples
are measured at different laboratories and the results compared, serve
many important purposes [1–3]. These purposes range from routine
quality control to investigating problems arising in challenging new
techniques. In a recent paper [4] we discussed such a comparison, in
which PRIME Lab (the Purdue Rare Isotope Measurement Laboratory)
and LLNL (Lawrence Livermore National Laboratory) performed 41Ca
accelerator mass spectrometry (AMS) [5] measurements on a series of
samples. These samples were not special, standard material; rather
they were unknowns that had already been chemically prepared and
measured at PRIME Lab for other studies [6,7]. Thus, the results are rep-
resentative of the actual quality of the measurements being done at
both labs. In our paper [4], the results from the two labs were compared
in a variety of ways; one particular methodwas grounded in a Bayesian
approach. In this new paper we focus on the Bayesian approach [8–10],
expanding on our original discussion. We analyze more aspects of the
data, and explore more possibilities that are inherent in the Bayesian
methodology. We hope in this paper to both provide a more in-depth
look at our particular data set, andmore generally, to provide ideas use-
ful in a wider context.

41Ca is an unstable isotope of calcium, with a half-life of 1.03 × 105

years. This half-life is short enough to make 41Ca rare in the environ-
ment, but long enough to make decay counting impractical. It is an
ideal candidate for AMS studies, since AMS has an extremely low detec-
tion limit [5]. Its AMS measurement is reported as the following ratio:

R = 41Ca/Ca, where the numerator is the number of 41Ca atoms in the
sample, and the denominator is the total number of the stable isotopes
of calcium (mainly 40Ca) in the sample.

41Ca has emerged as a valuable tool for a variety of studies. For exam-
ple, 41Cahas been used to glean information about pre-atmosphericme-
teorite dimensions [11,12]. For biomedical studies, the low detection
limit and the long half-life mean that a single, safe dose can be given
to an animal or a human subject, and then research can be conducted
for the biological lifetime of the subject without another dose ever
being administered [13]. In the 1990's it was suggested that 41Ca
could be used as a tracer to elucidate calcium metabolism in humans
[14,15], and this has now emerged as the most important application
of this nuclide [16–19]. For example, clinical trials have studied the effi-
cacy of both commercial anti-osteoporosis drugs and of botanical treat-
ments [6,7]. The increasing use of 41Ca in these biomedical studies adds
importance to our interlaboratory comparison.

The technical challenges of AMS 41Ca measurements mostly stem
from the low ion source currents that are produced when CaF2 is used
as the target material, and from the large number of interfering ions
that are present in the detector when measuring 41Ca. The easily pre-
pared compound CaF2 is the preferred target material for studies that
require high sample throughput.

The data set we will consider is a set of measurements on 47
samples, in which R ranged from about 10−10 to about 36 × 10−10.
(The data are presented in [4]). PRIME Lab and LLNL separately mea-
sured an aliquot of each sample, and reported an R value and an uncer-
tainty for each sample. As already mentioned, these samples were not
standards, so the true values are not known.We will use a Bayesian ap-
proach to address the following questions: (1) Are the results from the
two laboratories consistent? (2) Are the uncertainties quoted by the
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two labs reasonable? Since the samples were all unknowns, the answer
to a third question, ((3) how close are the results to the true values?),
involves quantitative input that goes beyond the data; this input is in-
corporated in the prior distribution, as we discuss.

2. Theoretical development

2.1. Bayesian approach

In this section,we develop the formalismwewill use.We enlarge on
the Bayesian discussion in our previous paper [4], again following the
approach presented by Dose [10] (see also [8,9]). A closely related prob-
lem arises when a group of independent laboratoriesmeasure the same
quantity, and we want to combine the results to determine the best es-
timate. For approaches related to ours, see [20–22].

Let [xi, σLi] be the LLNL data points and their associated uncertainties
for sample i, and [yi,σPi] be the PRIME Lab results for sample i. So, for ex-
ample, LLNL asserts that for sample i the probability density for the true
value has an average equal to xi and a standard deviation of σLi. We will
define four parameters, and use a Bayesian approach to formulate a
probability distribution for them. We will use, throughout this paper,
the notation p(A|B), which means the probability of A, given B.

First, we allow for a consistent offset of− a of the LLNL samples from
the true value, such that xi+ a is the true value.Wedefine a similar con-
sistent offset for the PRIME Lab samples, such that yi + b is the true
value. We will see what the data allow us to say about these offsets.
We note that other choices are possible; for example, we could assume
that the LLNL offset is proportional to xi, so that the true value is xi+ γxi,
where γ is the same for all of the LLNL samples. In this paper we will
focus our study on the offsets a and b.

Next, we also allow for the fact that the labsmay have misestimated
their uncertainties. A simple model for this is that vσLi andwσPi are the
true uncertainties of LLNL and PRIME Lab. This defines the two non-
negative parameters v and w. For example, if v b 1, this means that
LLNL is overestimating the uncertainty it assigns to its results, while if
v N 1 the uncertainties are being underestimated.

So, we have defined four parameters which characterize the quality
of the data; a and b tell us how accurate the measurements are, while
v and w tell us if the quoted uncertainties are correct. We should
emphasize that our approach is not based on a more fundamental, de-
tailed model of the experimental situation. Rather, these four parame-
ters are a simple way to allow for a range of errors in the reported
results. As mentioned above, other choices are possible; we hope that
this paper makes clear how alternative models could be handled in a
Bayesian spirit.

In the Bayesian approach, we do not simply use the data to estimate
the values of these parameters. Instead, the data are used to generate a
probability distribution (since these are continuous parameters, it is in
fact a probability density function, or pdf) for these parameters. This is
a more informative result, since from the complete pdf we can compute
all averages (such as b a N, b a2 N,…), generate contour plots, and calcu-
late probability distributions for any subset of our parameters.

To derive our basic equation, we start with Bayes theorem:

p a; b; v;wjdatað Þp datað Þ ¼ p dataja; b; v;wð Þp a; b; v;wð Þ ð1Þ

We first discuss themeaning of each of the four probability densities
in theprevious equation. p(a, b, v,w|data) is the joint probability density
for our four unknowns (a, b, v,w) given the data. This function is the re-
sult wewant. p(data) is the probability of acquiring the data; it does not
depend on the four unknowns, and can be dropped if we are willing to
normalize our result. Thus, we write

p a; b; v;wjdatað Þ ¼ cp dataja; b; v;wð Þp a; b; v;wð Þ ð2Þ

The value of c will be determined by requiring that

Z
da
Z

db
Z

dv
Z

dwp a; b; v;wjdatað Þ ¼ 1 ð3Þ

Next we discuss p(data|a, b, v,w); this is the probability of obtaining
our data, given the values of a, b, v, w, and is also known as the likeli-
hood. Wemust use our knowledge of themeasurement process to con-
struct an explicit expression for this likelihood.

Finally, we come to the pdf p(a, b, v, w). This is called the prior, and
embodies our information about the values of these parameters before
we havemade our measurements. Thus, a nice way to view Eq. (2) is as
follows. The prior, p(a, b, v,w) represents our knowledge of the four pa-
rameters before we collected the AMS data. This knowledge is then up-
dated through the likelihood, in order to produce p(a, b, v, w|data),
which represents our improved state of knowledge.

2.2. Derivation of the likelihood function

To derive the likelihood function, we start with

p dataja; b; v;wð Þ ¼ ∏
i
p xi; yija; b; v;wð Þ ð4Þ

where {xi} are the R values measured at LLNL, and {yi} are the R values
measured at PRIME Lab. Then, for each sample we may write

p xi; yija; b; v;wð Þ ¼
Z

dzip xi; yijzi; a; b; v;wð Þp zija; b; v;wð Þ ð5Þ

where zi is the (unknown) true R value for sample i.
Wemust nowmake severalmore definite assumptions.We take the

measurements to have a Gaussian distribution about the true value,
with the shifts a and b included:

p xi; yijzi; a; b; v;wð Þ∝
exp − xi þ a−zið Þ2

2v2σ2
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ð6Þ

Note that the parameters v and w each appear in two places, since
the overall normalization of each Gaussian factor involves its uncertain-
ty. Numerical factors that do not involve the parameters a, b, v and w
may be omitted, since we will normalize at the end. The Gaussians are
a reasonable choice, and are convenient for evaluating the integral.
We take the conditional probability p(zi|a, b, v, w) to be a constant,
since the true value zi should not depend on these parameters, and
will have a very broad range of possible values.

We may then evaluate the integral in Eq. (5) to obtain:

p xi; yija; b; v;wð Þ∝ v2σ2
Li þw2σ2

Pi

� �−1=2
exp − xi−yi þ a−bð Þ2
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 !

ð7Þ

Wenote that the likelihood involves a and b only in the combination
a− b. Thus, instead of using a and b, it is instructive tomake a change of
variables:

r ¼ a−b Q ¼ aþ bð Þ=2 ð8Þ

We then write our final form for the likelihood as

p datajr;Q ; v;wð ÞÞ ¼ ∏
i

v2σ2
Li þw2σ2

Pi

� �−1=2
exp − xi−yi þ rð Þ2

2 v2σ2
Li þw2σ2

Pi

� �
 !

ð9Þ
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