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Among measurement used in analytical chemistry, fluorescence spectroscopy is widely spread and its applica-
tions are numerous. To recover various information on unknown components in chemical mixtures, multilinear
tensor decomposition ofmultiwayfluorescence spectra has proven extremely powerful. However, inner filter ef-
fects induce a systematic error onmeasurements, disturbing the decomposition. In this paper, we fully describe a
non multilinear approach to include inner filter effects in the model instead of neglecting them or correcting
them by linearization methods. A theoretical framework on non multilinear tensor decomposition is developed,
an algorithm to recover the factors in the decomposition is detailed, and real data computer results are reported.
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1. Introduction

Fluorescence spectroscopy is a non invasive method for identifying
components and determining their relative contribution in samples.
Measurements consist of the response of the studied solution to a
monochromatic source, repeated for multiple excitation wavelengths
and recorded at multiple emission wavelengths [1]. The data is then
stored in a Fluorescence Emission Excitation Matrix (FEEM). Because
fluorescent chemical component (fluorophore) can be identified given
its excitation and emission spectra, analyzing fluorescence data is typi-
cally a blind source separation problem, where the sources are the un-
known fluorophores, and the observations are the mixing of their
spectrum stored in the FEEM.

During the last decade, the Canonical Polyadic decomposition (CPD)
[2] of tensors (seen as multiway arrays), also known in the community
as CANonical DECOMPosition (CANDECOMP) [3] or PARAllel FACtor
analysis (PARAFAC) [4], has proven very efficient at solving this blind
source separation problem [5]. The core idea behind tensor decomposi-
tion is that using only one FEEM and without any other a priori knowl-
edge, it is theoretically and practically impossible to recover the
components linearly because usually their contribution to the FEEM
overlaps. However, using multiple FEEM from different samples
provides a third diversity: the fluorophore concentration profile
through the sample set and hence a 3-way data tensor. This ensures

that information can be obtained on each component individually. A
sampling campaign is then an easyway to get a tensorwhose decompo-
sition reveals the different components in themixture. This approach is
now currently used in analytical chemistry [6] or environmental sci-
ences, in particular for Dissolved Organic Matter (DOM) tracing and
characterization purpose [7,8]. However there is a fundamental prob-
lem using the CPD to separate sources in fluorescence spectroscopy. In-
deed it is well known that the suitability of the linear fluorescence
model for describing a FEEM decreases with the solution absorbency
[1]. Hence, in many practical situations, the gradual absorption by the
solution of both exciting and fluorescent lights cannot be neglected.
These effects are known as inner filter effects (IFE) [9,10]. IFE affect
both FEEM magnitude and patterns and are still noticeable at quite
low concentrations, since the absorbency can still be very high. For in-
stance, this is the case for protein at low excitation wavelengths.

Most IFE correctionmethods consist of deducing the linear contribu-
tion from themeasured FEEM, which is then called the linearized FEEM.
The nonlinear contribution directly depends on the solution absorbance
spectrum. Therefore a first linearizationmay be achieved by strongly di-
luting the solution until reaching a maximal absorbance threshold [11].
However the procedure can be very tedious and can lead to contamina-
tion or physico-chemical changes, thus modifying the fluorescence
properties of the sample. The most common alternative is to measure
the absorbance spectrum of the solution and then deduce the nonlinear
contribution and finally linearize the FEEM [12,13]. However absor-
bance measurement is much less sensitive than fluorescence measure-
ment and can lead to poor results [14]. In addition, it often requires
another experimental device. In order to avoid these complications,
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more sophisticated correctionmethods that require neither a strong di-
lution of the solution nor the absorbance spectrum knowledge have
been recently proposed in Refs. [14,15].

In other words, to perform the three-way decomposition of a set of
FEEM suspected to be affected by IFE, FEEM are linearized independent-
ly, one after the other. Then a tensor gathering the linearized FEEM is
built and the CPD can be computed to identify individual spectra and
concentration profiles. Thereby these approaches do not directly exploit
the tensorial structure of the initial data set. In addition these methods
require additional measurements for each solution in order to linearize
the corresponding FEEM, which is time consuming and not always
possible.

We show in this contribution that such a fluorescent tensor can be
directly decomposedwithout any linearization step, andwe give a com-
plete analysis of all aspects of the resolution of the inverse problem. Fol-
lowing the non-linear model including inner filter effects [14], some
mathematical aspects are explored, focusing on local identifiability in
Section 2.3. The optimization problem and an efficient algorithm are
then described in Section 3. Finally, in Sections 4 and 5 we study its as-
sets on two real data sets.

2. A nonlinear fluorescence tensor decomposition

2.1. Modeling inner filter effect

We consider here a set of K FEEM measured from K mixtures of R
fluorophores.

Each fluorophore r can be characterized by the evolution of its con-
centration throughout the mixture set (its concentration profile), the
evolution of its molar extinction coefficient wrt (the excitation) wave-
length and the evolution of its light emission probability as a function
of (the emission)wavelength. In the following these values are denoted

by vector ar and functions~brðλexÞand~crðλemÞ respectively. Note that any
function of the form α~brðλexÞ defines the excitation spectrum of r and
any function of the formβ~crðλemÞ defines its emission spectrum in arbi-
trary units. Let xk(λex, λem) be the fluorescence intensity measured from
a givenmixture (sample) k at a given couple (λex, λem) of excitation and
emission wavelengths. A classical continuous fluorescence model,
taking into account IFE is then given by the followingnonlinear relation-
ship [14]:

xk λex;λem� � ¼XR
r¼1

arð Þk~br λex� �
~cr λem� �

vr ∏
R

r¼1
e−μ arð Þk ~br λexð Þþ~br λemð Þð Þ½ �

þek λex;λem� �
;

ð1Þ

where (ar)k denotes the kth entry of ar, vr and μ are unknown values
modeling non observable or experimental parameters (such as
fluorophore quantum yields, optical path length…) and e is an error
term. Indeed, we have to recall here that although it takes into account
IFE, this model is still an approximation of the (noisy) fluorescence
measurement [14,16]. Since excitation and emission spectra are
unnormalized, it is then interesting to define functions br(λex) and
cr(λem) as

br λð Þ ¼ μ~br λð Þ; ð2Þ

cr λem� � ¼ vr
μ
~cr λem� �

; ð3Þ

yielding a simpler model:

xk λex;λem� � ¼XR
r¼1

arð Þkbr λex� �
cr λem� �

∏
R

r¼1
e− arð Þk br λexð Þþbr λemð Þð Þ

þ ek λex;λem� �
: ð4Þ

Now turning back to our set of FEEM, we respectively denote
[λex

min; λex
max], Δex, [λem

min; λem
max] and Δem as the excitation range, the

excitation sampling step, the emission range and the emission sampling
step used to measure each FEEM. Excitation and emission range sizes
are denoted L and M respectively. We assume for the moment that ex-
citation and emission sampling steps are equal and that in the wave-
length range [λem

min; λex
max] all excitation wavelengths and emission

wavelengths coincide i.e. Δex = Δem and λemmin coincides with a value of
λex. At this point this assumption is fundamental but we will see in the
algorithm description how it can be relaxed.

In practice, for numerical computations, excitation and emission
wavelength ranges are substituted by two ranges of integer index:
[1; L] and [1;M] respectively so that if we callX the fluorescence tensor
of size (K × L × M) that gathers these K FEEM we have:

Xklm ¼ xk λmin
ex þ l−1ð ÞΔex;λmin

em þ m−1ð ÞΔem

� �
: ð5Þ

In the same way, for each fluorophore r we can define discrete ver-
sion of excitation and emission spectra truncated in the considered ex-
citation and emission ranges as vectors of sizes L and M and denoted
respectively br and cr, whose entries are defined by:

brð Þl ¼ br λmin
ex þ l−1ð ÞΔex

� �
; ð6Þ

crð Þm ¼ cr λmin
em þ m−1ð ÞΔem

� �
: ð7Þ

Wealso assume that λexmin and λemmin can be different andwe define the
wavelength index shift s as:

s ¼ λmin
em −λmin

ex

Δex
þ 1: ð8Þ

Note that according to the previous hypothesis, it appears clearly
that s is a strictly positive integer.

As a consequence, in order to develop a rigorous discrete version of
the continuous non-linear fluorescence Model (4) we need to define a
“shifted” excitation br′ spectra of sizeM as:

b0
r

� �
m ¼ brð Þmþs−1 if m ≤ L−sþ 1; ð9Þ

b0
r

� �
m ¼ 0 if mNL−sþ 1: ð10Þ

Finally X can be decomposed as:

Xklm ¼
XR
r¼1

Ak;rBl;rCm;r ∏
R

r¼1
e−Ak;r Bl;rþB0

m;rð Þ þ Eklm; ð11Þ

where A, B, B′ and C are matrices of size (K × R), (L × R), (M × R) and
(M × R) respectively so that column r of A (respectively B, B′ and C)
contains vector ar (respectively br, br′ and cr). This decomposition
is called the Non Linear Fluorescence Decomposition (NLFD) and
matrices A, B and C are the factor matrices of the decomposition
(B′ being directly deduced from B). We also refer to this model as
non multilinear, by opposition to the usual multilinear tensor
decomposition CPD.

From an algorithmic point of view, it will be useful to stack all the
unknown parameters of the decomposition, i.e. all entries of A, B and
C in a unique parameter vector θ:
θ ¼

vec Að Þ
vec Bð Þ
vec Cð Þ

2
4

3
5; ð12Þ

where vec() is the operator that maps a matrix or a tensor to a
column vector by stacking its columns one below the other in a
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