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The amount of gas produced from a coal gasification facility depends crucially on the properties and the size
distribution of the coal being used in the process. The particle size distribution and the composition of the coal
are measured as compositional data. In this paper we apply the Dirichlet distribution for the inputs and present
a new classification scheme for yielding low,mediumand high gas production. The approach presented is a linear
partitioning of the Dirichlet simplexes that can also be extended to high dimensional cases. An alternative
clustering approach based on a distance measure is also presented.

© 2015 Elsevier B.V. All rights reserved.
Keywords:
Coal gasification
Compositional data
Dirichlet distribution
Multinomial Model

1. Introduction

Sasol's coal-to-liquids facility delivers nearly 29% of the fuel require-
ments in South Africa, and the continuous improvement and optimiza-
tion of the coal gasification plant are of critical importance to the
company to ensure stable supply of high quality synthesis gas to the
downstream units. The amount of gas produced from the coal gasifica-
tion facility depends crucially on the properties and the size distribution
of the coal being used in the process. Therefore, in order to optimize gas
production, the relationship between the properties of the coal and the
gas produced must be understood and quantified [1]. In this paper we
develop and discuss a new classification scheme whereby we discrimi-
nate between coal properties and size distributions for yielding high gas
production.

The particle size distribution (PSD) and the composition of the coal
are measured as compositional data. The Dirichlet distribution has
been widely accepted in literature for modelling compositional data,
subject to the constraint that all the correlations between variables are
negative [2]. The coal PSD and composition conform to the negative cor-
relation constraint, and therefore, we fit the Dirichlet distribution to
these input variables. A wider class of distributions which allows for
positive correlations defined on the same sample space is the Logistic-
Normal (LN) [3]. However, the LN distribution has many parameters
to estimate due to the unknown covariance parameter matrix. In
contrast, the Dirichlet distribution has only p unknown parameters to
estimate for p compositional variables.

The current study is motivated by a coal gasification industrial
problem where the amount of gas produced is a function of the quality
of the coal being fed to the reactors, and it is crucially important to the
business to know which coal sizes and compositions will yield optimal
or sub-optimal production. The coal-to-liquids production facility
gasifies no less than 40million t of bituminous coal per yearwhich is de-
livered to the factory from 5 to 7 coal sources. Therefore, the coal sizes
and compositions can be very different from source to source and
from week to week. Furthermore, the coal blending schedule is
updated weekly subject to feed availability. Since the coal gasification
process is a continuous process and the performance of the reactors is
monitored in real time, it is also desired to employ a real timemonitor-
ingmodel for the coal feed to the reactors using data obtained from ap-
propriate analytical equipment. Therefore, the classification scheme is
presented in this study. This classification scheme can, for example, be
implemented for real-timemonitoring of the coal property composition
and the size distribution of the coal being fed to the reactors for early de-
tection of coal blendswhichmay yield low gas production [4]. Real time
detection of sub-optimal feed allows the factory to be pro-active in
changing the coal blends to minimise the losses in gas production and
to sustain profits.

In this study, three size fractions (expressed as proportions) x1, x2
and x3 and three compositions (also expressed as proportions) c1, c2
and c3 were considered. The dependent variable (Y) depending on co-
variates C = (C1, C2, C3) and X = (X1, X2, X3) is divided into three cate-
gories namely high (H), standard (S) and low (L), representing 20%,
68% and 12% of production respectively. These boundaries were chosen
to illustrate themethodology only, and have no relevance to current op-
erational performance.We assume that Y conditional on C= c or X= x
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is distributedMultinomial (n, px) where px = (pH, pS, pL) represents the
Multinomial probabilities. The aim of this paper is to classify a coal
sample as H, S or L under the desired constraint p0 = (0.20, 0.68,
0.12), given its composition (c) and sizes (x). Here PX denotes the
random variable and px the observed proportion given x (or c).

The classification scheme based on a single covariate (X) can be
summarized as follows:

1. Y jPX � f yjPXð Þ ≡Multinomial n; PXð Þ

2. PX|x ~ k(px|g(X)) where k is some selected distribution of PX and g(X)
refers to the information on X used to specify k.

3. Xjα � h xjαð Þ ≡Dirichlet αð Þ

4. The classification scheme: Partition the Dirichlet sample space into
subspaces H, S and L such that px = (pH, pS, pL) coincides with p0.

In this paper we demonstrate and discuss the application of the
above classification scheme using simulated data from the specified
probability distributions. The results are generated through simulation
since the integrals cannot be solved analytically. We illustrate and
discuss the performance of two alternative classification schemes:

1. a linear partitioning of the Dirichlet sample spaces, and
2. a clustering approach based on minimising a chosen metric.

The paper is outlined as follows: In Section 2, a brief introduction on
applicable Dirichlet properties is given. In Section 3 the linearmethod is
described and applied on a simulated dataset. In Section 4 the proposed
method is extended to higher dimensions. In Section 5 the clustering
approach is discussed. Conclusions and future work are discussed in
Section 8.

2. The Dirichlet distribution

Wilks [5] and de Groot [6] provided detailed discussions onmany of
the properties of the Dirichlet distribution. We only mention a few. If X
of order p × 1 is distributed Dirichlet (α1, …, αp + 1), denoted by D(α),
then the joint density is given by

f xð Þ ¼ ∏pþ1
i¼1 Γ αið Þ
Γ α0ð Þ ∏
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Aitchison [7] calls this distribution the Compositional Dirichlet
defined on the specified simplex.

1. The means and covariances are
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μ = (μ 1, …, μ p) denotes the mean of the distribution and Σ =
(σij) i, j = 1,…, p the covariance matrix.

2. Themarginal distribution of Xi is Beta(αi, α0− αi) and the condition-
al distribution of Xi given Xj ≠ i= xj, j=1,…, (i− 1), (i+1),…, p is a
scaled Beta(αi, αp + 1), 0 b xi b 1−∑j ≠ i

p xj or Xi

1−∑p
j≠ix j

is distributed

Beta(αi, αp + 1). The conditional distribution is useful to simulate
Dirichlet observations using the Gibbs sampler. The marginal distri-
bution of any subset J of X is again Dirichlet(αJ, α0 − ∑i ∈ Jαi).

3. Note in Eq. (2) that ifα is amultiple ofβ for twoDirichlet distributions
D(α) and D(β), the means are the same, but the covariance matrices
differ.

4. The negative differential entropy L = E(log f(X)) of the Dirichlet
distribution (Eq. (1)) is given by

L ¼ logΓ α0ð Þ−
Xpþ1
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Hokela [8]. ψ(.) refers to the digamma function.
5. The log Jeffreys prior [9] for the Dirichlet(α) is

0:5
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ψ′(.) refers to the trigamma function.
This prior is used later to obtain a posterior distribution of parame-
ters. The derivation of the above is given in Van der Merwe and de
Waal [10].

6. Suppose we have two Dirichlet populations, D(α1, …, αp, αp + 1)
(parent population) and D(β1, …, βp, βp + 1), then the Kullback–
Leibler measure of divergence between the two follows from
Eq. (3) as

KL ¼ E log
f Xð Þ
f 0 Xð Þ ¼ log
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The size of KL ≥ 0 gives a measure of divergence between f0 and f.

3. Classification of Dirichlet sample spaces

A dataset is constructed on compositions (C) and sizes (X) by simu-
lating 200 Dirichlet(α) and Dirichlet(β) observations independently. To
each random vector of observations (C1, C2, X1, X2), the production level
H, S or L is assigned according to the linear functions partitioning the
two sample spaces (see Fig. 1) such that 20% of the observations are
classified as H, 68% as S and 12% as L. Note that these boundaries were
chosen to illustrate the methodology only, and have no relevance to
current operational performance.

Fig. 1. SimulatedDirichlet observations on C and Xwith linear lines classifying each obser-
vation as H (stars), S (dots) or L (plusses).
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