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Partial least squares (PLS) and principal component regression (PCR) are twowidely used techniques for dimen-
sion reduction in chemometrics. However, the relationship between PLS and PCR is not entirely understood. In
this paper, we introduce the idea of sufficient dimension reduction (SDR) to chemometrics, and show that PLS
and PCR are methods of SDR. Furthermore, this paper shows that these two methods are equivalent within the
framework of SDRwhichmeans that there is no theoretical advantage of PLS over PCR in terms of prediction per-
formance. The above conclusion is supported by the results of a simulated dataset and three real datasets.
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1. Introduction

Over the last few years, science and technology advanced profound-
ly that they have changed all the fields and allow scientists to collect
high-dimensional data sets such as genetic data, chemical data and
spectroscopy data. A common feature of these datasets is that the num-
ber of variables (p) is much larger than that of the observations (n),
which refers to the “large p, small n” problem [1,2]. Due to the “curse
of dimensionality” [3], many classical statistical methods are no longer
applicable. Variable selection [4–8] and dimension reduction [9–14]
are effective techniques to solve the problem. And dimension reduction
becomes increasingly important in high-dimensional data analysis,
with the help of which, we can obtain more accurate and easier inter-
pretation models.

There are some well-known dimension reduction methods aiming to
construct linear combinations of predictors ΓTx = (γ1

Tx, …, γk
Tx)T(k b p)

and to perform dimension reduction by replacing x with ΓTx. Principal
component regression (PCR) [9–11] and partial least squares (PLS)
[12–14] are two kinds of dimension reduction methods. These methods
are strongly promoted in chemometrics and widely applied in many
kinds of fields, such as spectroscopy data [10,11,13] and microarray data
analysis [16]. Other dimension reduction techniques known by statisti-
cians but rarely used in chemometricians are continuum regression
(CR) [17,18], sliced inverse regression (SIR) [19], sliced average variance
estimation (SAVE) [20] and some other variations [21–23].

PCR constructs latent variables that preserve information asmuch as
possible in var(x) =∑x. Especially, the i-th latent variable γi

Tx has the
largest variance among all latent variables of x orthogonal toγi

Tx,…,γi−

1
Tx. But, there is no real evidence to suggest that components with

small variances are unimportant in the regression model [26]. Since
PCR only considers the structure of predictors, it is relatively easy to un-
derstand its statistical properties. PLS considers the relationship be-
tween the predictors and the response when constructing the latent
variables. Since PLS components not only depend on the predictor var-
iables but also on the response variable, the investigation of statistical
properties for PLS is a particularly challenging task. Frank and Friedman
showed that PLS tried to find directions with both high variance and
high correlation with the response variable [27]. Helland discussed the
PLS procedure under a comparatively general statisticalmodel and indi-
cated some connections between PCR and PLS [28,29]. Stone and Brooks
constructed a unified objective function and introduced continuum re-
gression (CR) which contains OLS and PCR as the two opposite ends of
a continuum spectrumwith PLS lying in between [17,18]. Rosen consid-
ered PLS from the perspective of the Gauss–Markov model and served
invariant subspaces to indicate some relationships between PCR and
PLS [34]. Li and Liang et al. introduced elastic component regression
which was a linear combination of two criteria of PCR and PLS and
showed a natural progression from PCR to PLS [35]. There are some pa-
pers that have already compared the predictive ability of these two
methods. De Jong proved PLSfitted better than PCRwith the samenum-
ber of components, but this result did not appear to influence predictive
ability [36]. Wentzell and Montoto used simulation studies of complex
chemical mixtures which contained a large number of components to
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show that PLS almost always needed fewer latent variables than PCR,
but this result did not necessarily turn into superior prediction perfor-
mance [37]. He and Zhou proposed a called weight-framework to
show the relationship of PLS and PCR [38]. However, the relationship
of PLS and PCR is not entirely clear from the literature mentioned
above. Generally, there exists an overwhelming popularity of PLS over
PCR among chemists; however, no obvious advantage of PLS over PCR
in terms of predictive ability is observed in multivariate calibration.

Dimension reduction as a pre-process is a prominent issue today.
Sufficient dimension reduction (SDR) introduced by Cook, is important
in both theory and practice [21]. SDR performs dimension reduction
with no loss of information and less stringent pre-specifying model
structures. What's more, it is not affected by the potential structure in
the dataset. These characteristics of SDR make it widely used in many
kinds of high-dimensional data analysis, such as computer vision [40],
biological science [41–44], and drug discovery data [46]. Although the
idea of SDR is widely used in various disciplines, this idea is rarely
used in chemometrics. Li first explored the link between PLS and SDR
and showed the relationship between OLS and PLS in the SDR context
[22]. Cook et al. used an envelope, which was a novel context for effi-
cient estimation in multivariate analysis, to build a connection between
PLS and SDR. This relation framed PLS algorithm as a Fisherian parame-
terization. In addition, this advance connects two different statistical
methodologies, which allow for deeper comprehending of PLS algo-
rithm and its properties [23]. Some relations of PLS and SDR have
been established. In contrast, the connection between PCR and SDR is
studied very little. In this article, we introduce the idea of SDR to
chemometrics. Meanwhile, we establish the relationship between PCR
and SDR. In particular, we show that PLS is equivalent to PCR in the
SDR framework, in other words, there is no theoretical advantage of
PLS over PCR in terms of prediction performance.

This paper is organized as follows. Section 2 establishes notational
conventions. Section 3 briefly outlines themodels of PLS and PCR, intro-
duces the idea of SDR and discusses some relationships of PLS, PCR and
SDR. Section 4 then displays the results of a simulated dataset and three
real datasets to illustrate this equivalence. Finally, Section 5 summarizes
the conclusions of the paper.

2. Notation

The following notations are needed in our exposition. Boldface upper-
case letters (A, B) denote matrices, boldface lowercase letters (a, b) de-
note column vectors and lowercase italic letters (a, b) denote scalars.
Let x= (x1, x2,⋯, xp)T denotes a p-dimension random vector with mean
E(x) = 0 and ∑x = var(x) N 0. y denotes a respond random variable
with mean E(y) = 0 and σxy = cov(x, y). X ∈ Rn × p denotes sample

matrix; y ∈ Rn × 1 denotes sample column vector. Let ∑̂x ¼ XTX=ðn‐1Þ
and σ̂xy ¼ XTy=ðn‐1Þ. span(A) denotes space spanned by the columns
of the p × q matrix A. 〈a, b〉∑ = aT∑b denotes the ∑ inner product
in Rp, where ∑ is a symmetric, positive definite matrix in Rp × p. When
∑ = Ip, the p × p identity matrix, this inner product changes the
usual inner product. ‖ ‖2 denotes the Euclidean norm.

3. Theory

In this paper, we will consider the general population statistical
model

y ¼ xTβþ ε ð1Þ

where β is a vector of parameters and ε is an error random variablewith
mean zero (E(ε) = 0) and variance (var(ε) = σ2).

3.1. Theory of PLS and PCR

Next we will introduce the population version of the PLS algorithm
which is based on Helland's work [28,31]. For further details and refer-
ences we refer to Helland's papers.

(i) Set starting residual values for x and y:

e0 ¼ x;

f 0 ¼ y:

For k = 1, 2,⋯, do the following steps (ii)–(iv):
(ii) Scores tk denote linear combinations of the x residuals from the

previous procedure, wk denote weights:

tk ¼ eTk−1wk;

wk ¼ cov ek−1; f k−1ð Þ:

(iii) Conclude x loadings pk and y loadings qk:

pk ¼ cov ek‐1; tkð Þ=var tkð Þ

qk ¼ cov f k‐1; tkð Þ=var tkð Þ

(iv) Calculate new residuals:

ek ¼ ek‐1−pktk;

f k ¼ f k‐1−qktk:

From (i) and (iv), bilinear representation obtained at each
step k:

x¼p1t1 þ⋯þ pktk þ ek; y¼q1t1 þ⋯þ qktk þ f k ð2Þ

Given a new sample x, scores tk can be constructed from the new x
value and the response y is predicted by

ŷk;PLS¼q1t1 þ⋯þ qktk ð3Þ

Eq. (3) can be written in the next form [28]:

ŷk;PLS¼xTβk;PLS ð4Þ

where βk,PLS is the regression vector of PLS in a population version.
Helland has proved that two formulae of βk,PLS are equivalent:

βk;PLS ¼ Wk WT
k∑xWk

� �−1
WT

kσxy; where Wk ¼ w1;⋯;wkð Þ ð5Þ

βk;PLS ¼ Sk STk∑xSk
� �−1

STkσxy; where Sk ¼ σxy;∑xσxy;⋯;∑k−1
x σxy

� �

ð6Þ

This result was also discussed in Cook et al. [23].
For our purpose, Eq. (6) is used for constructing a predictor of y in

this paper.
By comparing with the sample version of the PLS algorithm, which

was described in the references mentioned above, it is easy to see
exactly the same as between the sample version and the population
version, only that sample (co-)variances are replaced with population
(co-)variances.

PCR is one of the most commonly statistical procedures with a wide
range of applications. Due to the fact that the algorithm and theory of
PCR are familiar to the chemometricians and there are lots of relevant
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