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This paper presents Posterior-Weighted Active Search (PWAS), an active-sensing algorithm for classification of
volatile compounds with arrays of tunable chemical sensors. The algorithm combines concepts from feature
subset selection and sequential Bayesian filtering to optimize the sensor array tunings on-the-fly based on infor-
mation from previous measurements. Namely, the algorithm maintains an estimate of the posterior probability
associated with each chemical class, and updates it sequentially upon arrival of each new sensor observations.
The updated posteriors are then used to bias the selection of the next sensor tunings towards the most likely
classes, in this way reducing the number of measurements required for discrimination. We characterized
PWAS on a database of infrared absorption spectra with 250 analytes, and then validated it experimentally on
an array of metal-oxide sensors. Our results show that PWAS outperforms passive-sensing approaches based
on sequential forward selection, both in terms of classification performance and robustness to noise in sensor
measurements.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Chemical sensors are generally used as first-order devices, where
one measures the sensor's response at a fixed setting, e.g., absorption
of an optical sensor at a specific wavelength, or conductivity of a solid-
state sensor at a specific operating temperature [1]. In many cases,
additional information can be extracted by modulating some internal
property of the sensor. As an example, measuring the conductivity of a
metal-oxide chemical sensor at different temperatures can provide a
wealth of discriminatory information [2]. However, this additional
information comes at a cost, such as sensing times or power consump-
tion. For this reason, feature subset selection (FSS) techniques are
commonly used to identify a subset of the most informative sensor
configurations.

Over the past decade, a handful of investigators in the chemical
sensor community have explored active sensing as an alternative to
FSS [3–7]. In contrast with FSS, where the sensor configurations are
optimized off-line, active sensing adapts the sensor configurations in
real-time based on information obtained from previous measurements.
In previous work [6,7], we showed that active sensing can achieve
higher classification performance than FSS with fewer measurements
and provides a trade-off between sensing costs and classification perfor-
mance. Unfortunately, these active-sensing methods were developed
for individual sensors, and do not scale up to sensor arrays. First, the
number of operating configurations for a sensor array grows

exponentially with the size of the array; given an N-sensor array with
D configurations per sensor, there exist DN unique configurations.
Second, chemical sensor arrays are notoriously collinear (i.e., their re-
sponse across multiple chemicals is correlated), so additional strategies
are needed to account for correlation among sensors.

This article proposes Posterior-Weighted Active Search (PWAS), an
active-sensing algorithm for sensor arrays that addresses both issues
(combinatorial explosion and sensor collinearity). PWAS performs
active sensing by optimizing the sensors' tunings towards the most
likely classes at each sensing step; for this purpose, PWAS uses the
sequential Bayesian filter of our prior work [6,7] to update the posterior
probability of each class upon arrival of each newmeasurement. To cope
with the combinatorial explosion in sensor array tunings, PWAS uses
local search to build the sensor array configurations incrementally
(one sensor at a time). Finally, to cope with sensor collinearity PWAS
uses one of the two objective functions we have developed for this
purpose. The first objective function is a parametric filter derived from
the multivariate Fisher score [8], and weighs the within-class and
between-class scatter matrices according to the estimated class poste-
riors. The second objective function is a non-parametric information-
theoretic filter that measures feature relevance and feature redundancy
with respect to the class posteriors. PWAS operates following a ‘search-
sense-update’ sequence. During the ‘search’ step, the algorithmuses the
local search and objective functions to build the next sensor array
configuration. During the ‘sense’ step, the algorithm takes sensor mea-
surements using the selected configuration. During the final ‘update’
step, the algorithm re-estimates the class posteriors by feeding themea-
sured sensor responses to a sequential Bayesian update equation. This
search-sense-update process is continued until a predefined stopping
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criterion is met, at which point the final class label is declared based on
maximum a posteriori (MAP) criterion.

The rest of thepaper is organized as follows. Section 2 provides back-
groundmaterial on active sensing, and its applications to chemical sen-
sors. Section 3 describes the proposed PWAS algorithm with a focus on
the two objective functions, which are novel contributions of this paper.
Section 4 provides a thorough evaluation of PWAS against FSS and ran-
dom feature selection on a database of low-resolution absorption spec-
tra containing 250 chemicals. Section 5 describes the experimental
setup and results from validating the approach on an array of commer-
cial MOX sensors. The article concludes with a discussion of results and
directions for future work.

2. Background

The idea of active sensing originates from the theory of ‘active
perception’ [9,10], which states that an organismactively probes the en-
vironment to enhance its ability to extract behaviorally relevant infor-
mation. The concept caught on during the 1980s in the robotics
and vision community [11], where it was used to denote control strate-
gies that dynamically adapted sensing configurations as the sensor
interacted with its environment. Since then, active-sensing principles
have been used widely in vision, robotics and target tracking to address
various computational problems such as classification, detection,
estimation, sampling, and tracking. This prior work has shown that ac-
tive sensing canmanage sensing resourcesmore efficiently than passive
sensing, and can also provide a balance between sensing costs and
sensing accuracy [12].

In a classic paper on active vision, Aloimonos et al. [13] showed that
several computer vision problems that are ill-posed and non-linearwith
passive observers become well-posed and linear by use of an active
observer (i.e., one that can control the parameters of its apparatus,
such as focal length or orientation). Over the last two decades, active
sensing has also been used for motion tracking [14], scene exploration
and reconstruction [15], face recognition [16], vision-based localization
and mapping [17], and scene segmentation [18].

Active-sensing strategies have also been broadly used in robotic nav-
igation [19], localization [20,21], simultaneous localization andmapping
[17], and robotic exploration [22]. A classical active-sensing problem in
robotics is to decide where to move the robot (location decisions) and
how to reconfigure its sensors (sensing decisions) [23]. These problems
arise from the exploration-exploitation dilemma, which involves a
trade-off between immediate rewards (exploitation) such as bringing
the robot closer to its goal, and long-term effects (exploration) such as
gathering information through landmarks, surrounding obstacles, or
reading signs.

Along these lines, active sensing has also received attention for use
in military scenarios, specifically for tracking dynamic targets with sta-
tionary [24] and mobile sensors [25–27]. The target-tracking problem
involves estimating locations and velocities of multiple moving targets
(e.g., ground vehicles) using surveillance sensors such as radars, sonars,
or electro-optical sensors. One of the central challenges in target track-
ing is selecting the next sensing action; this involves choosing sensors,
setting their configurations (such as pointing angles, dwell lengths,
etc.), or possibly moving them to another location.

2.1. Prior work in active chemical sensing

Though not as broadly as in vision, robotics and target tracking,
active-sensing principles have been applied to various chemical sensing
problems as well, including odor generation, chemical discrimination,
and data collection. To our knowledge, the earliest use of active sensing
in the chemical/olfaction domain is the work of Nakamoto et al. [28,29]
on odor generation. The objective of this workwas to reproduce an odor
blend by creating a mixture from its individual components. The
authors developed an active-control algorithm that adjusted the

mixture ratio so that the response of a gas sensor array to the mixture
matched the response of the array to the odor blend.

Active sensing has also been used for chemical discrimination prob-
lems. As an example, Priebe et al. [3] developed a statistical pattern clas-
sification method termed Integrated Sensing and Processing Decision
Trees (ISPDT). This method builds a decision tree to partition feature
space hierarchically; nodes close to the root provide good clustering of
examples regardless of class labels, whereas nodes at the leaves seek
to discriminate examples from different classes. Each internal node
defines a sensor configuration (a feature) and its children the possible
observations. The decision tree is used to guide the sensing process as
follows. First, the sensor is operated according to the feature at the
root node. The resulting observation falls into one of the child nodes,
which determines the next step: either acquire new measurements
(if it is an internal node), or to classify the sample and terminate sensing
(in case of a leaf node). The authors evaluated ISPDT on a dataset con-
taining the response of an optical sensor array to trichloroethylene
(a carcinogenic industrial solvent) in complex backgrounds; ISPDT
reduced misclassification rates by 50%, while requiring only 20% of all
the sensors to make any individual classification.

More recently, Lomasky et al. [30] developed an “active class selec-
tion” method to optimize the generation of training datasets for e-
nose applications. Their approach was based on principles from active
learning, a machine-learning technique where the learning algorithm
chooses the training samples from which it learns. Active learning as-
sumes that many training instances are readily available and that the
cost lies in labeling them (e.g. through human annotation). However,
in e-nose applications the costs are not associatedwith labeling existing
samples but with the more laborious process of collecting new ones.
Therefore, the active class selection problem involves choosing the
class of the next training instance, whereas the active learning problem
deals with choosing the next training instance to be labeled. Lomasky's
approach consists of generating the next set of n training instances in
proportion to the instability of class boundaries, measured in terms of
the number of test instances whose classification labels change upon
inclusion of the previous set of n training instances. The authors validat-
ed the approach on an experimental dataset fromanarray offluorescent
micro-bead sensors exposed to six organic chemicals and their
mixtures. The results show that active class selection can minimize
the number of new training instances needed to obtain the maximal
classification performance.

An optical implementation of active-sensing principles was proposed
by Dinakarababu et al. [4] for rapid identification of chemicals. In this
work, the authors developed an Adaptive Feature Specific Spectrometer
(AFSS), a digital micro-mirror device capable of multiplexing certain
spectral bands and directing them onto a photo-detector. In this fashion,
the system is able to measure the projection of the incoming spectral
density onto a set of basis vectors, rather thanmeasure the spectral den-
sity directly. The basis vectors are the eigenvectors of a probabilistically-
weighted covariance matrix, with the probabilities corresponding to the
likelihoods of different classes based on previous measurements.

Our early investigations of active sensing focused on the problem of
discriminating M chemicals at fixed concentration with a single
temperature-modulated metal-oxide sensor. In [6], we presented a
partially observable Markov decision process (POMDP) solution to this
problem, and proposed a myopic policy that selected sensing actions
based on the expected reduction in Bayesian risk. In subsequent work
[5], we reformulated the problem to not only identify chemical samples
but also estimate their concentrations using Fabry–Perot interferome-
ters. This new approach used nonnegative matrix factorization [31] to
create concentration-independent absorption profiles of different
chemicals, and linear least squares to fit sensor observations to the re-
sponse profiles. In latter work, we extended the active-sensing method
to estimate the concentration of mixtures with known components
[32], and the more challenging problem of estimating concentrations
of mixtures with unknown components [33].
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