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A genetic algorithm to detect multiple additive outliers in multivariate time series is proposed. In contrast with
manyof the existingmethods, it does not require to specify a vector ARMAmodel for thedata and is able to detect
any number of potential outliers simultaneously reducing possible masking and swamping effects. A generalized
AIC-like criterion is used as objective function. The comparison and the performance of the proposedmethod are
illustrated by simulation studies and real data analysis. Simulation results show that the proposed approach is
able to handle patches of additive outliers.
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1. Introduction

The treatment of outlier in a data set is important for many reasons.
First, outliers can have a considerable influence on the results of an anal-
ysis (e.g., leading to model misspecification, biased parameter estima-
tion and incorrect forecasting). It is therefore important to identify
them prior to modeling and analysis of the data. For example, outlier
detection is one of the most important steps for building high-quality
univariate and multivariate calibration models [1,2]. Second, although
outliers are often caused by measurement or recording errors, some of
them can represent phenomena of interest, something significant
from the viewpoint of the application domain (e.g., credit card fraud
detection, clinical trials, network intrusion, severe weather prediction,
geographic information systems). Third, for many applications, excep-
tions identified can often lead to the discovery of unexpected knowl-
edge. Outliers are of primary interest when analysing chemical data.
For example, in geochemical exploration they are indications for miner-
al deposits. In amanufacturing process, outliersmay represent failure of
the underlying mechanical system, materials of inferior quality, or
unexpected experimental conditions and results. In environmental
applications, outliers may represent highly contaminated areas. A series
of papers on outlier detection were published in the chemometric lit-
erature. [3] proposed an outlier detection method for non-bilinear
data, a situation in whichmore common detection techniques have dif-
ficulty. [4] proposed a procedure based on the PROP influence function
that works effectively at identifying outliers in univariate as well as

multivariate data sets of all sizes. [5] introduced amethod for outlier de-
tection in building linear regression for data with interval-bounded
error. [1,2] showed that outliers incorporated into a multivariate cali-
bration model can significantly reduce the performance of the model
and propose robust statistical methods for the detection of outliers.
Other useful references for the outlier detection are [6–8].

The chemist frequently encounters continuous processes often
described as time series. Examples are continuous industrial processes
where deviations from pre-set limits can result in poor quality of a
product or sometimes industrial accidents. Time series occurring in
geochemistry when measuring compounds down the core, in environ-
mental chemistrywhenmonitoring seasonal diurnal changes in compo-
sition, in clinical chemistry when monitoring biorhythm and finally
when tracking reaction kinetics by methods such as stopped-flow.
These time series are useful to provide a description of a dynamic sys-
tem and to develop models for monitoring or controlling continuous
process. The first step in building statistical process monitoring system
formultivariable continuous processes is to develop an accurate process
model. One example of an important chemical process control problem
is wastewater treatment [9]. The empirical process model should be
built from reliable data. The presence of just a few items of anomalous
data can lead to model misspecification, biased parameter estimation
(see [10]), and poor forecasts (see [11]). The presence of outliers in
the variable of interest affects the reliability of the data which can result
in erroneous interpretations concerning the variable of interest. For
these reasons outlier-free time series data are essential to develop accu-
rate models. Therefore, it is essential to identify them, estimate their
magnitude and correct the time series and at the same time avoid
false identifications (i.e. observations that are identified as outliers
while they are not).

Chemometrics and Intelligent Laboratory Systems 132 (2014) 103–110

⁎ Corresponding author. Tel.: +39 0649910657; fax: +39 064959241.
E-mail address: domenico.cucina@uniroma1.it (D. Cucina).

0169-7439/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.chemolab.2014.01.007

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r .com/ locate /chemolab

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2014.01.007&domain=pdf
http://dx.doi.org/10.1016/j.chemolab.2014.01.007
mailto:domenico.cucina@uniroma1.it
http://dx.doi.org/10.1016/j.chemolab.2014.01.007
http://www.sciencedirect.com/science/journal/01697439


Several approaches have been proposed in the literature for han-
dling outliers in univariate time series. Among these methods we can
distinguish those based on an explicit model (parametric approach)
from those that use non-explicit models (nonparametric approach).
For the parametric approach, [12] developed a likelihood ratio test for
detecting outliers in a pure autoregressive model. [10,13–15,11] ex-
tended this test to an autoregressive integrated moving-average
(ARIMA)model and proposed an iterative procedure for detectingmul-
tiple outliers.

For the non-parametric approach, [16–20] proposed specific proce-
dures based on the relationship between the additive outliers and the
linear interpolator, while [21] used a genetic algorithm.

Outliers can occur in several variables simultaneously caused by
common-mode sources like instrumentation system failures (e.g., loss
of a common power source for multiple instruments), communication
system failures, or the simultaneous influence of a process upset on
several measured variables. For multivariate time series, only three pro-
cedures have been proposed. [22] proposed a sequential detection proce-
dure, which we will call the TPP method, based on individual and joint
likelihood ratio statistics; this method requires an initial specification of
a vector ARMA model. [23,24] proposed a method based on univariate
outlier detection applied to someuseful linear combinations of the vector
time series. The optimal combinations are found by projection pursuit in
the first paper and independent component analysis in the second one.

Multiple outliers, especially those occurring close in time, often have
severe masking effect and smearing effect that can easily render outlier
detectionmethods inefficient. Although there is no rigorousmathemat-
ical definition of masking and swamping effect, we report the defini-
tions from [25]:

• Masking effect. An outlier masks a second one that is close by if the
latter can be considered an outlier by itself, but not if it is considered
along with the first one.

• Swamping effect. An outlier swamps another instance if the latter can
be considered outlier only under the presence of the first one.

The termmasking is due to [26] while the term swapping is defined
in [27]. Several procedures for independent data are proposed for
reducing masking and swamping effects (e.g., [1,28,2,29]). A special
case of multiple outliers is a patch of additive outliers. For univariate
time series this problem has been addressed firstly by [30]. They define
a procedure for detecting outlier patches by examining blocks of con-
secutive observations. Other useful references for the patch detection
are [31–33]. For multivariate time series, only [24] report simulation re-
sults for an outlier patch.

Unlike the univariate casewhere there are specific procedures on the
identification of consecutive outliers, in multivariate time series frame-
work, methods for identification of consecutive outliers do not exist.

In this paper we propose a genetic algorithm (GA) [34–36] for iden-
tifying multiple additive outliers in multivariate time series. The use of
GAs for outlier detection seems attractive because several outliers may
be processed simultaneously, in this way they are less vulnerable to
themasking and smearing effects. Note that almost all availablemethods
for outlier detection are iterative, but there is a crucial difference with
GAs. In this latter case, any potential locationmay change through the it-
erations. In existing methods, once a location has been selected, it re-
mains fixed in the subsequent iterations. So, the GAs seem able to
providemore flexibility and adaptation to the outlier detection problem.

2. Theory

2.1. Genetic algorithms

Many optimization problems do not satisfy the necessary conditions
to guarantee the convergence of traditional numerical methods. For
instance, in order to apply standard gradientmethods tomaximum like-
lihood estimation we need a globally convex likelihood function,

however there are a number of relevant cases with non convex likeli-
hood functions or functions with several local optima. Another class of
“hard” problems is when the solution space is discrete and large.
These problems are known as combinatorial problems. A simple ap-
proach for solving an instance of a combinatorial problem is to list all
the feasible solutions, evaluate their objective function, and pick the
best. However, for a combinatorial problem of a reasonable size, the
complete enumeration of its elements is too computationally expensive,
and most available searching algorithms are likely to yield some local
optimum as a result [37].

GAs are often used to solve such problem instances. GAs do not rely
on a set of strong assumptions about the optimization problem, on the
contrary, they are robust to changes in the characteristics of the prob-
lem. On the other hand, they do not produce a deterministic solution
but a high quality stochastic approximation to the global optimum.

GAs, inspired by [34], imitate the evolution process of biological sys-
tems, to optimize a given function. GAs use a set of candidate solutions,
called population, instead of one single current solution. In GAs termi-
nology, any candidate solution is encoded via a numerical vector called
chromosome. The GAs proceed by updating the population of active
chromosomes (the sets of current candidate solutions) in rounds, called
generations. In each generation, some of the active chromosomes are
selected (parents-chromosomes) to form the chromosomes of the
next generation (children-chromosomes). The selection process is
based on an evaluationmeasure called fitness function, linked to the ob-
jective function, that assigns to each chromosome a positive number.
This fitness is the determining factor for calculating the probability to
select a chromosome as a parent. A higher fitness value leads to higher
probability that the corresponding chromosome will be one of the par-
ents used to form the children-chromosomes. Children are formed by
recombining (crossover) randomly the genetic material of their two
parents-chromosomes and perhaps after a random alteration of some
of the genes (single digits of the chromosome) which is calledmutation
(see [34,35], for a detailed description).

Several papers on genetic algorithms in chemometrics have been
published recently (e.g., [38–41]). Two articles deal with the problem
of outliers [42,43]. [36] and [44]reported a wide review of applications
of GAs to chemometric problems.

2.2. Solution encoding

Each solution ξc is a binary stringwith lengthN, whereN is the num-
ber of observations of the time series: ξc = (ξ1c ,ξ2c ,…,ξNc ), where ξic takes
the value 1 if at time i there is an outlier and 0 otherwise. Each chromo-
some is composed of N bits, therefore their storage space is not large
also when N is much large. Obviously, the number of outliers for a
given time series is unknown. We allow solutions with a maximum
number of outliers equal to g. The value of g should be chosen according
to the series length and every relevant a priori on its accuracy and insta-
bility. The constant g should be chosen large enough to allow detection
of any reasonable number of outliers in the series.

Binary encoding implies that the solution space Ω consists of

∑g
k¼0

N
k

� �
distinct elements, since the total number of outliers is lim-

ited to a constant g. We can see that Ω is really large even if g is consid-
erably lower than the length of the time series. For example, with g=5,
the solution spaceΩ is of order 2× 109when the sample size isN=200,
and it is of order 8×1010when the sample size isN=400. Ifwe increase
the value of g or N it seems reasonable to increase also the generation
number of the GA because a larger solution space has to be explored.

2.3. Fitness function

Let yt = [y1,t,…,ys,t]′ be a Gaussian s-dimensional jointly second
order stationary real-valued vector time series, with mean zero for

104 D. Cucina et al. / Chemometrics and Intelligent Laboratory Systems 132 (2014) 103–110



Download English Version:

https://daneshyari.com/en/article/1179458

Download Persian Version:

https://daneshyari.com/article/1179458

Daneshyari.com

https://daneshyari.com/en/article/1179458
https://daneshyari.com/article/1179458
https://daneshyari.com

