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As an efficient method for spectra correction, multivariate scatter correction (MSC) has recently received consid-
erable attention due to the precision improvement of processed data. In general, the spectra approximate mean
spectrum S in least square framework. Unfortunately, the existingMSCmethods have a limited capability in non-
linear componentmodeling. In this paper, we propose regularizedmultivariate scatter correction (RMSC), which
has taken nonlinear components into MSCmodel as well as regularization function for the weight vectorw. The
weighted sum of mappings of observed spectrum is used to approximate the mean spectrum. By using gradient
projection sparse representation, vector w is obtained for RMSC. Results show a substantial decrease in Root
Mean Square Error of Prediction of quantitative analysis and improvement in classification precision.

Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Infrared spectroscopy is an important analytical technique available
to today's scientists. The advantage of the infrared spectroscopy is that
any sample in any state can be studied [1].With the invention of Fourier
transform infrared spectroscopy (FTIR), it becomes a valuable approach
for quantitative and qualitative analysis [2–9].

When analyzing complex samples, uncontrolled variations in light
scattering often heavily reduce the precision of subsequent chemical
quantitative analysis. These unpredictable scattering variations are nor-
mally caused by uncontrolled physical variations of samples. Obviously,
one approach to control the light scattering is to ensure that sample
preparation procedure has the same scattering parameters for all sam-
ples, which is impossible. Therefore, the proper ways for eliminate or
suppress scattering variation rely on mathematical methods. A number
of preprocessing algorithms are proposed, which normally are per-
formed with two successive steps: (1) response transformation and
(2) linearization. In step 1, the data are transformed into reflectance
(R), transmittance (T), and absorbance (A). In step 2, the linearization
includes: normalization, mean centering, first, second or higher deriva-
tive and Fourier transform.

MSC is a widely used algorithm which can efficiently remove the in-
fluence of scattering. Consequently, it becomes a hot field in spectral pre-
processing. Several papers have proposed efficientMSCmethods [10,11].
In order to eliminate specular reflectance, scatter errors linearize the
spectral data and decrease noise variance, multiplicative scatter correc-
tion is proposed by Geladi [12]. InMSC, we utilize the observed spectrum

Sob to approximate the standard signal Sstandard via linear transform. The
approximation eSob is regarded as the corrected signal Scorrected when the
error between Sstandard and eSob reaches minimum. The same data after
MSC transformation aremuchmore linear, the noise variance diminishes
substantially and MSC gives a better or more regular distribution of the
samples, in comparison to non-MSC data. However, this method simply
regards that the observed signal is a linear transformation of standard
signal, and ignores the nonlinear component which is also important to
the spectral analysis. Therefore, Geladi'smethod can't effectively improve
the precision. In addition, if spectral regions are presentedwhere the tar-
get analyte or certain chemical interfering agents exhibit strong absorp-
tion, then MSC parameter estimation may confuse chemical absorption
and physical light-scattering effects with dramatically bad results.

The main idea of PMSC is to make linear regression fits to local re-
gions of the spectra, assuming that the spectra are continuous and
smooth [11]. MSC proposed by Geladi is employedwithin eachwindow.
Consequently, PMSC inherits disadvantages of MSC. Meanwhile, the as-
sumption of smoothness is not always satisfied and length of window is
difficult to estimate.

Extended Multiplicative Scatter Correction (EMSC) is proposed by
Martens, which using prior knowledge about the absorbance spectra
of the major constituents and assumptions about smooth wavelength-
dependency of the light scattering variation, the corrected spectra be-
come insensitive to light scattering variations and respond linearly to
the analyte concentration. Thus, the subsequentmultivariate calibration
regression model has better predictive performance. The spectrum
approximates the standard spectrum with wavelength λ [13,14].

Scorrected ¼ Sstandard−a−cλ−dλ2

b
ð1Þ
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where a, b, c, and d are parameters to the model. However, the disad-
vantages of proposed method are: (1) it's difficult to estimate the pa-
rameters of the model and (2) corrected spectrum always overlaps
baseline.

Efficient nonlinear components modeling approaches are not pro-
posed in existing MSC methods. RMSC assumes that light scattering in-
troduces nonlinear fluctuations to the spectrum, which can be regarded
as weighted sum of a series of nonlinear mappings of spectrum. The
weight w is obtained by an optimization algorithm. Using this weight
and corresponding mappings the spectrum is corrected.

The remainder of this paper is organized as follows: In Section 2, fun-
damental ofMSC is briefly introduced and a newmodel for spectral cor-
rection is also presented. In Section 3, the algorithm for proposedmodel
is presented. Then in Section 4, experimental results and analysis are
presented, and finally, in Section 5, the conclusions are drawn.

2. Multivariate scatter correction

Light scattering is a result of optical inhomogeneity in the sample.
The analyst is most often only interested in the absorbance information
in the spectra. Interferences (i.e. scatter variation) must consequently
be either fully modeled or eliminated to give a robust and accurate
quantitative result. In order to eliminate the influence of scattering,
multivariate scatter correction is a useful method. The steps of MSC
can be expressed as follows:

1. Define standard spectrum Sstandard as mean S:

Sstandard ¼ S ¼ 1
n

Xn
i¼0

Sobi ð2Þ

where Sobi(i = 1,…,n) is the i-th collected spectrum and the size of
Sobi is 1 × N; n is the number of collected spectra.

2. Suppose the relationship between Sobi and S is linear

Sobi ¼ aþ bS: ð3Þ

3. Sobi approximates S via linear transform

Sobi−a
b

¼ eSobi: ð4Þ

eSobi is corrected spectrum Sstandard. Let−a/b = w0,1/b = w1, Eq. (4)
can be rewritten as:

Scorrected ¼ w0 þw1Sobi: ð5Þ

The essence of MSC is to approximate standard spectrum in the least
square frame. Consequently, Eq. (4) can be formulated as:

min
w0 ;w1

S− w0 w1½ � 1
Sobi

� �����
����2 ¼ min

w
S−wSob

�� ��2 ð6Þ

where w ¼ w0 w1½ � and Sob ¼ 1 Sobi½ �T , T means the transpose of
matrix.

2.1. Extended MSC

Light scattering mainly depends on wavelength λ, for which reason
the variation of wavelength should also be taken into account. The
EMSC model can be illustrated as:

Sobi ¼ w0 þw1Sstandard þw2λþw3λ
2
: ð7Þ

If the coefficients w0, w1, w2, and w3 of Eq. (7) had been known
theoretically, or estimated perfectly, then the EMSC correction:

Scorrected ¼ Sstandard−w0−w2λ−w3λ
2

w1
: ð8Þ

2.2. Regularized MSC

According to the light scattering theory, the intensity of scattering is
related to wavelength λ. In Eq. (8), w2λ and w3λ2 represent the fluctu-
ation when wavelength λ changes. We can regard the influence as a
function of λ, then we can formulate Eq. (8) as:

Scorrected ¼ Sstandard−w0− f λð Þ
w1

: ð9Þ

Light scattering is controlled bywavelength λ. In otherwords,wave-
lengthwill influence the amplitude of spectra signal. The influence over
spectra can be described as nonlinear fluctuations of signal amplitude.
Therefore, in order to improve the accuracy of spectral analysis, nonlin-
ear fluctuations of amplitude should be taken into consideration. Our
proposed method RMSC is formulated as:

min
w

�����S−
XM
j¼0

wjΦ j Sobið Þ
�����
2

¼ min
w

S−wΦ Sobið Þ�� ��2

subject to : P wð Þbη; wk k2 ¼ 1 ð10Þ

where w ¼ w0 w1; ⋯ wM½ � is the weight vector and the nonlinear

mapping function is defined as Φ Sobið Þ ¼ Φ0 Sobið Þ Φ1 Sobið Þ; ⋯½ ΦM

Sobið Þ�T andM is the number of the mapping function. In our discussion,
Φ0(x) = 1, Φj(Sobi) = Sobi

j (j ≠ 1). P(⋅) is a penalty function for weight
to control over fitting which has various forms such as: (1) ℓ0-norm:

P(w) = ‖w‖, (2) ℓq-norm: P wð Þ ¼ wk kq ¼ ∑N
i¼0 wij jqÞ

1
q

�
. Fig. 1 plots

the contour of the penalty function for different parameters. If q ≤ 1
and λ is sufficient large, some of the coefficients wj are driven to zero.

Fig. 2 is geometric interpretation of the equivalence of ℓ1-norm and
the sparseness [15]. Useful form is ℓ1-norm and we can obtain sparse
coefficient [16–19].

3. Algorithm

For simplicitywewriteΦ(Sobi) asΦ(Sob). Introducing the Lagrangian
variables λ1, λ2 and let P(w) = ‖w‖1, Eq. (10) can be ultimately written
as Lasso:

min
w

S−wD
�� ��2 þ γ wk k1: ð11Þ

q=0.5 q=1 q=2

1 2w w C 1 2w w C 2 2
1 2w w C

Fig. 1. Contour of the penalty term for various values of the parameter q.
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