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While partial least squares (PLS) and principal component regression (PCR), the most popular regression
techniques in chemometrics, may theoretically be able to deal with large numbers of possibly correlated
variables, as occurring in the analysis of spectroscopic data, the importance of performing some form of variable
selection in practical applications has been widely discussed and acknowledged. In this work we address this
problem via proposing a sparse regression algorithm, referred to as fused stagewise regression (FSR), which
iteratively performs a selection of connected regions of variables (wavelengths), while being quite easy to imple-
ment and interpret, due to its resemblance to typical steps in iterative manual feature selection procedures. We
evaluate the proposed variable selection technique on a publicly available benchmark data set and compare the
performance of PLS models built on the determined selection to ones obtained by state-of-the-art feature selec-
tion methods from the fields of chemometrics and machine learning. In order to ensure robust feature selection,
we integrate the individual selectionmethods into an extensive repeated cross validation procedure. For the data
set under investigation, it is shown that FSR performs at least as good as state-of-the-art approaches and well
within the range of variable selections provided by experts.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A critical step in the analysis of spectroscopic data is the choice of an
appropriate variable/wavelength selection used for chemometric
modelling. Projection-based regression methods, such as PLS or PCR,
are designed to dealwith a very large number of possibly correlated var-
iables. In practice, though, and particularly for near-infrared (NIR) and
mid-infrared (MIR) applications, it is known that a removal of irrelevant
and noisy wavelengths can improve prediction performance, yield sim-
pler models and allow for better model interpretation (see e.g. [1,2] and
references therein). Ideally, a determination of relevant variables should
be based upon expert knowledge about the chemical properties of the
substance under analysis. In practice, though, such a selection can only
rarely be considered an objective process, as it is frequently heavily in-
fluenced by the experience of the expert carrying out the analysis.
Thus, different experts may select significantly different wavelengths,
possibly also resulting in highly deviating models and corresponding

performances. This issue becomes particularly obvious when analysing
highly complex target substances or properties, where a selection of rel-
evant spectral regions solely based on chemical insightmay be extreme-
ly difficult, if possible at all. Because of this, a universally applicable
algorithm working independently of expert knowledge can often bear
advantages.

This has been known for a long time and, as an exhaustive search of
the perfect combination of variables is generally impossible, resulted in
the use and development of a huge variety of different variable selection
algorithms: starting with forward and backward selection methods [1],
through genetic algorithms [3,4], up to, among others, interval PLS
(iPLS) [5,6] or moving window PLS (MWPLS) approaches (see e.g. [2]
and references therein). In contrast to techniques that pick combina-
tions of single variables, iPLS and MWPLS select connected regions of
wavelengths (=wavebands) and are thus of particular interest in spec-
troscopy, a field where adjacent variables are usually highly correlated.

In this contribution, we aim at the introduction of a new waveband
selection algorithm that is based on the idea of the Fused Lasso [7], a re-
gression method developed in the field of machine learning. In an iter-
ative manner, the newly developed approach seeks for connected
regions of variables relevant for predicting the target property at hand
andweights them in an appropriate way, resulting in a vector of regres-
sion coefficients that can either be used for prediction as is done for any
other conventional regression technique, but incorporating implicit
waveband selection, or serve in a pre-step to regression, purely to deter-
mine important input variables. In order to allow for a fair comparison
with state-of-the-art variable selection methods, only the latter
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approach1is studied and PLS is employed in the regression step.2 Results
for a benchmark data set from literature are given in Section 7. The com-
plete algorithm, its basic ideas and recommendations for parameter se-
lection, possibly incorporating expert knowledge, are presented in the
following sections.

2. Background — Lasso and the Fused Lasso

Our proposed fused stagewise regression algorithm is based on
the idea of a regression technique referred to as the Fused Lasso
[7]. This technique represents a generalization of the popular Lasso
method [8] which solves the optimization problem stated in
Eq. (1), where X denotes the mean centred n × p design matrix
(rows corresponding to samples and columns to variables/wave-
lengths) — in a spectroscopic application each row of X corresponds
to a spectrum, y the mean centred n × 1 vector of target observations
(reference vector), β the p× 1 vector of regression coefficients and λ1

a non-negative regularization parameter determining the influence
of the l1 regularization term.

βL ¼ argmin
β∈ℝ p

y−Xβk k22 þ λ1 βk k1
� �

: ð1Þ

Thus, the Lasso aims for a solution, βL, minimizing the sum of
squared residuals, while attempting to keep λ1‖β‖1 = ∑j = 1,…,p‖βj‖
small. It has been shown [8] that the use of the l1 norm in the penalty
term λ1‖β‖1 introduces sparsity, i.e. it enforces solutions βL with
βj = 0 for many coordinates j, thereby resulting in an implicit vari-
able selection. A closer look at the solution reveals, however, that
in case of correlated adjacent variables, as found in spectroscopy,
the Lasso tends to select a set of single wavelengths instead of con-
nected regions. From a chemical (thinking in terms of functional
groups) and statistical (use of redundancies) point of view, the selec-
tion of wavebands, i.e. connected regions of wavelengths, would be
favourable.

This is actually the idea behind a method referred to as the Fused
Lasso [7] which incorporates an additional regularization term and
solves

β F L ¼ argmin
β∈ℝp

y−Xβk k22 þ λ1 βk k1 þ λ2

Xp−1

j¼1

β jþ1−β j

�� ��
0
@

1
A: ð2Þ

Aswas already the case for the Lasso solution, the term λ1‖β‖1 intro-
duces sparsity in the regression coefficients, resulting in βj = 0 for
certain j. In the same manner, the use of the l1 norm in the additional
penalty termλ2∑j=1

p − 1|βj+1−βj| introduces sparsity in thedifferences
(βj+ 1−βj) of consecutive coordinates, resulting in βj+ 1=βj formany
j (i.e. βjs to be equal to their immediate neighbouring entries). As such,
the combination of these two penalty terms leads to a piecewise con-
stant solution βF L containing connected regions of zero and non-zero
entries, where the latter ones exhibit only a limited number of different
values and only few significant jumps between neighbouring coeffi-
cients [7].

Due to this property, the Fused Lasso appears particularly suitable
for employment in spectroscopic analysis. The problem of solving the
optimization objective in Eq. (2), though, was found to be considerably
more challenging than the solution of the Lasso problem [9–11]. An ex-
cellent review of existing algorithms, incorporating information on ap-
plicability, limitations and computational considerations, was
provided by Yu et al. [11]: For a long time only special cases, demanding
a certain structure or properties ofX, could be solved efficiently [12–14].
Solutions for a more general setting, including the one occurring in
spectroscopy, could only be provided via the introduction of numerous
auxiliary variables and constraints [7] in order to enable the application
of a general purpose quadratic programming solver. As has been noted
by Tibshirani et al. as well as others, e.g. [15,11], this computational ap-
proach does not scale well with the number of considered variables, p.
Concretely, it is stated that for values of p N 2000 and n N 200 speed
could become a practical limitation, particularly if five or tenfold cross
validation is carried out. In 2010, Liu et al. published an algorithm for
the efficient solution of this problem [15]. The complexity of the
proposed algorithm, though, makes it difficult to follow propagated
steps and interpret finally selected bands. Recently developed
algorithms [16–18,11] bear the advantage to provide solutions to an
even more general optimization problem, but are, in our opinion,
equally complex and difficult to follow. This led us to develop a forward
stagewise regression (FSR) algorithm that is based on the idea of the
Fused Lasso but designed in away that allows for considerably easier in-
terpretation and implementation. A comparison of finally selected
wavebands will be carried out for the analysed data set in Section 7.

1 The former approach is intended to be studied in a follow-up publication.
2 The same approach is adopted for all other discussed regression techniques

performing implicit variable selection (i.e. for the Lasso, Elastic Net and Fused Lasso).

Table 2
Criteria used to determine best parameters/parameter combinations.

Method Criterium

FusedStage Minimization of the FSR MSECV (i.e. the MSECV obtained if the FSR
predictions are compared against the measured reference values;
same notation also for methods below).

GAPLS None
FusedSLEP Minimization of the (SLEP) Fused Lasso MSECV.
Lasso SLEP: minimization of the (SLEP) Lasso MSECV.

MATLAB: Determine the largest λ1, for which the corresponding
(Matlab) Lasso MSECV is within one standard error of the minimum
(see also http://www.mathworks.de/help/stats/lasso.html). This
value is referred to as λ1,1SE below.

ElNet SLEP: minimization of the (SLEP) Elastic Net MSECV.
MATLAB: determine λ1,1SE to all available λ2el and compute (Matlab)
elastic net MSECVs for all (λ1,1SE, λ2el) pairs. Use the combination
with minimal obtained MSECV.

MWPLS Minimization of the PLS MSECV obtained using the selected variables
only and a fixed number (set to 10 in results below) of PLS
components.

Table 1
Method specific parameters to be determined in inner CV loop.

Method Parameters

FusedStage τ ∈ [0, 1]: Minimum correlation parameter
η ∈ [0, 2]: Relative step size
ϕ ∈ [0, 1]: Relative shrinkage
δ ∈ [0, 1]: Only for FusedStageCUT; Cutoff parameter

GAPLS None: The number of evaluations could be decided within the inner
CV loop, but experiments have shown that the prior selection of a
good value once in advance is possible. The same was found true for l,
the number of variables to combine in mean building.

FusedSLEP λ1: l1 — norm regularization parameter
λ2: Regularization parameter controlling the influence of the
l1 — norm on differences of successive regression coefficients.

Lasso λ1: l1 — norm regularization parameter
ElNet λ1: l1 — norm regularization parameter

λ2el: l2 — norm regularization parameter
MWPLS w: Window width

ρ: Importance thresholding parameter Additionally, the maximum
number of PLS components m could be chosen within the inner CV
loop, but was found possible to be set suitably (10) in advance.

Expert None
NoSel None

54 B. Malli, T. Natschläger / Chemometrics and Intelligent Laboratory Systems 149 (2015) 53–65



Download English Version:

https://daneshyari.com/en/article/1179509

Download Persian Version:

https://daneshyari.com/article/1179509

Daneshyari.com

https://daneshyari.com/en/article/1179509
https://daneshyari.com/article/1179509
https://daneshyari.com

