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Forensic science aims to infer characteristics of source terms using measured observables. Our focus is on statis-
tical design of experiments and data analysis challenges arising in nuclear forensics. More specifically, we focus
on inferring aspects of experimental conditions (of a process to produce product Pu oxide powder), such as tem-
perature, nitric acid concentration, and Pu concentration, usingmeasured features of the product Pu oxide pow-
der. The measured features, Y, include trace chemical concentrations and particle morphology such as particle
size and shape of the produced Pu oxide power particles. Making inferences about the nature of inputs X that
were used to create nuclearmaterials having particular characteristics, Y, is an inverse problem. Therefore, statis-
tical analysis can be used to identify the best set (or sets) of Xs for a new set of observed responses Y. One can fit a
model (ormodels) such asY= f(X)+ error, for each of the responses, based on a calibration experiment and then
“invert” to solve for the best set of Xs for a new set of Ys. This perspectives paper uses archived experimental data
to consider aspects of data collection and experiment design for the calibration data to maximize the quality of
the predicted Ys in the forward models; that is, we assume that well-estimated forward models are effective in
the inverse problem. In addition, we consider how to identify a best solution for the inferred X, and evaluate
the quality of the result and its robustness to a variety of initial assumptions, and different correlation structures
between the responses.We also briefly review recent advances inmetrology issues related to characterizing par-
ticle morphology measurements used in the response vector, Y.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Forensic science is a broad discipline that aims to infer characteris-
tics of source terms using measured observables. In many cases, the in-
ferred source terms can be traced to an attribution goal. For example, if
certain ranges of input Pu concentration could be ruled out, then partic-
ular processes that otherwise might have produced the product could
be ruled out. Our focus is experiment design and data analysis chal-
lenges arising in nuclear forensics.We focus on inferring aspects X of ex-
perimental reaction conditions using measured features Y of the
reaction product. The word “signature” is a useful qualitative term
that conveys shifts in the responses Y as a function of changes in thepro-
cessing conditions X. Such a task falls within the scope of the Depart-
ment of Homeland Security National Technical Nuclear Forensics
Center, which is sponsoring a Plutonium processing signatures multi-
year project to identify signatures of nuclear forensic value in plutonium
(Pu) materials that can be related to the processing conditions used to
produce them. One initial goal is to identify possible signatures derived
from PuO2 produced via a Pu(III) oxalate precipitation process shown in

Fig. 1: [11,14,20,61]. The inferred processing conditions could help indi-
catewhat facility and settingswere used tomake the interdicted special
nuclear material.

The context we focus on in this perspectives paper is to produce a
variety of PuO2 materials via a statistically designed experiment that is
currently in the planning stages in which certain process factors are de-
liberately varied over a course of experimental trials. Other process fac-
tors not discussed here will be held constant. Each experimental trial
involves specific settings for each process factor. Once produced, the
materials are analyzed to characterize their morphological, chemical
and physical properties (which may include trace element concentra-
tions, surface area, crystalline phase, and porosity). Collectively, it is ex-
pected that the properties of the materials produced will span a wide
range. Design of experiments enables a causal relationship between
the factors and responses to be systematically explored and functional
models describing the relationship between them to be estimated. Ulti-
mately, the goal is to be able to infer the set of experimental conditions
used to produce the material, based on its observed properties using an
inverse modeling approach.

In anticipation of the new experimental data in the near future, this
perspectives paper uses archived experimental data from a previous
similar process to consider aspects of data collection and experiment
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design for the calibration data to maximize the quality of the predicted
Ys in the forward models; that is, we assume that well-estimated for-
ward models are effective in the inverse problem. In addition, we con-
sider how to identify the best solution for the inferred X, and evaluate
the quality of the result and its robustness to a variety of initial assump-
tions, and different correlation structures between the responses. We
also briefly review recent advances in metrology issues related to char-
acterizingparticlemorphologymeasurements used in the response vec-
tor, Y, and describe theneeded statistical tools that have been developed
for chemometrics and other applications. Also, new technical challenges
arise in this forensics context, including: the need to characterize mea-
surement error, with possible censoring (data reports as “less than a
particular threshold” or “more than a threshold”), making use of inter-
laboratory sample exchange programs to help estimate measurement
biases, new assay protocols, particularly for particle morphology mea-
surements using modern image analysis to characterize particle size
and shape, the need to allow for a combination of qualitative and quan-
titative factors, and the fact that regardless ofwhat functional form is as-
sumed to relate X to Y, once the data are collected, many functional
forms will be evaluated.

We have begun to generate candidate experiment designs following
established optimality criteria for the forward model with an approxi-
mately known functional form. Simulation is expected to be a key anal-
ysis tool to address the metrology, experiment design assessment,
calibration, and model selection challenges. This allows candidate de-
signs to be compared across different potential outcomes incorporating
scenarios described in Sections 5 and 6.

This perspectives paper reviews multivariate calibration, experi-
ment design for multivariate calibration, and describes to what extent
previous literature helps address the example nuclear forensics applica-
tion. Section 2 gives more background. Section 3 describes multivariate
calibration and experiment design as used in chemometrics, with a
focus on the inverse problem. Section 4 describes related metrology is-
sues, focusing on morphological measurements with particle morphol-
ogy measurements included the predictors X and with recent ongoing
efforts to improve morphology measurements. Section 5 describes cur-
rent progress in the context of the motivating nuclear forensics
example. Sections 6 and 7 include research directions and a summary.

2. Background

Weuse the following notation. There are p factors (predictors) and q
responses.

Factors=Processing conditions such as temperature, nitric acid and
Pu concentrations X1,X2,…,Xp. Complete factor set: X = {X1,X2,…,Xp}.

Responses = Measurements of processed material such as particle
size and shape

Y1,Y2, …,Yq
Signature= Complete set of responses, Y = {Y1,Y2,…,Yq}
Forward (causal) models are often developed using the results of a

controlled experiment. Forward models are often (but not necessarily)
expressed in terms of a low-order polynomial, which can be thought

of as a Taylor series approximation to the true underlying relationship.
Suchmodels relate a specific response (Yi) to the complete set of factors.
Generically, this relationship can be expressed as Yi = fi(X1,X2,…,Xp).
The main forensics goal is to use the signature acquired from material
of an unknown pedigree to infer the conditions used to process the ma-

terial. Inverse prediction, generically expressed by X̂ j ¼ g jðY1;Y2;…;YqÞ,
can be used to predict the value of the jth process factor based on mea-
sured properties. Oneway to perform inverse prediction is with a collec-
tion of fitted forward models from the signature of the unknown
material. Alternatively, one might use the data acquired from the exper-
iment to form a training set from which an inverse model can be devel-
oped directly,without using forward models [29,30,37,38,46]. While
physics and chemistry dictate the causal relationship between factors
and responses, experimenters can influence control over the complexity
of the fitted forwardmodels via selection of factors, factor levels, and the
set of trials performed. Experimenters also influence the effectiveness of
the inverse modeling process by selecting a sufficiently informative/dis-
criminating set of response variables (the “signature”) that can be used
to unambiguously resolve the various factors. For a given sample, the
number of responses comprising the signature may be limited by diffi-
culty, expense, and/or availability of material. We believe that there
should be at least as many response variables as factors (q ≥ p) to suc-
cessfully deduce the complete set of conditions used to process an un-
known material. With fewer responses (q b p), there is considerable
potential for ambiguous results with non-unique solutions.

To illustrate, Fig. 2a is a principal coordinate plot [62] of the distances
between theX vectors for each of the 72 samples. The X vector is the per-
centages of fat, sucrose, dry flour, and water in a cookie recipe. The re-
sponse vector, Y, is 700 near-infrared (NIR) reflectance from 1100 to
2498 nanometers in steps of 2 nm. This is freely available data from the
R [49] package ppls (which provides functions for linear and nonlinear
regression based on partial least squares and penalization techniques;
see Section 3.1). FromFig. 2a,we select samples 24 and 51 (in the bottom
left corner of the plot) that are close in the X-space, and sample 19 (top
right) far away.We plot the corresponding three spectra in Fig. 2b. Qual-
itatively, in this case, a small (large) distance in X-space corresponds to a
small (large) distance in Y space between samples, which indicates that
one could anticipate using Y to predict Xwith reasonable success.

In processes to produce Pu oxide, we estimate the relationship be-
tween the chemical engineering processing parameters employed and
the physical, chemical, and morphological characteristics of the pro-
ducedmaterials. The response Ys used to infer processing conditions in-
clude morphological features and trace chemical concentrations, but
could also include other analytical chemistry measurements (such as
crystallographic phase, surface area, chemical form, heterogeneity, oxi-
dation state, isotopic composition, nitrate/chloride/sulfate/hydroxide/
carbide or other anion or organic contaminants present). Inferred pro-
cessing conditions such as temperature, Pu and nitric concentration
could indicate the facility used to produce any future interdicted Pu
powder. Due to the large number of chemical engineering flow sheets
used historically, process variations within each flow sheet, and the po-
tential for even more variations among international and subnational

Fig. 1. PuO2 production via a Pu(III) oxalate process that is one of many possible Pu precipitation and crystallization methods for the conversion or recovery of plutonium. Pu(III) oxalate
precipitation has been used since the Manhattan Project because of its good Pu recovery and ability to be filtered. Experimental reaction conditions include, for example, the form of the
oxalate and the order of addition (Pu to oxalate or vice-versa, reagent/reactant concentrations and addition rates, nitric acid concentration. temperature and duration, stir rates). These Xs
create different features Y in the PuO2. The Y features include particlemorphology (size, shape, structure, porosity), particle agglomeration, and trace element containment concentrations.
Literature suggests that the process removes impurities such as Al, Fe, and UO2, but there is less “decontamination” fromNa, Ca, K; and none fromAmericium [22]. Different precipitation
processes have different decontamination factors, so these trace elements can be a process signature.
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