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An important characteristic of chemometrics has been its need to manage the tradeoff between computational,
mathematical and statistical performance against data interpretability. Additionally, being mostly seen as a con-
glomeration of data analytic methods that target the solution to real-world problems, the development of
chemometrics as an independent andwell-defined field has been hampered by its applied nature. Consequently,
the broad range and diversity of application of chemometric tools has hindered the development of a unified
theory able to propel it beyond its current use in analytical and industrial chemistry to larger andmore complex
data problems.
In this paper, we provide a mathematical vehicle for the understanding and improvement of current methods
popular in chemometrics. Starting from a historical solution to matrix factorization we develop a novel unified
framework for the fundamentals of latent variable modeling methods, elucidate major properties and clarify
controversies between major PLS implementations and interpretations. The concepts presented in this work
aims at contributing to a deeper understanding of theunderlying theory of chemometricsmethods, and strength-
en their use in practice. Furthermore, this effort attempts to bridge the gap between chemometrics and big data
problems and contribute to the development and acceptance of chemometrics as a mature and independent
scientific field by the broader data analytic community.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Chemometrics followed the evolution of analytical chemistry and re-
sulted in many successful applications in chemical, petrochemical [1],
pharmaceutical [2–4], and food processing [5,6]. This progress came
with a number of challengeswhen dealingwithmore complex datasets.
This is the case when advanced analytical instruments are used such as
chromatography [7–12], metabolomics [13–15], mass spectrometry
[16–18], hyperspectral imaging [2,19], and industrial processes [20,21].

In most of its applications, a central dogma in chemometrics is the
need for interpretable models. This helps explain the importance
given to visualization of the data in loading, residual, and score graphs
where group identification, outlier detection, and ultimately data anal-
ysis become a visual and intuitive task. In this context, prior technical
or scientific knowledge can be used to enhance any analysis. This inter-
est in understanding the data, rather than simply use it for prediction,
explains the focus of chemometrics on methods offering a balanced
tradeoff between statistical performance and interpretability, as
shown in Fig. 1.

The enormous increase of its applications creates an imbalance with
basic research [22]. As stated in [23], the lack of theoretical develop-
ments seriously challenges the sustainability of chemometrics as a
data science of the future. It has led to some misuse of algorithms [8,
22,24] resulting in unfortunate false discoveries, and a loss in confidence
to use the methods in other scientific fields [25]. The most classical ex-
amples are highly over-fittedmodels, prediction performance evaluated
on the training set (implying that no validation was performed), and
non-robust sampling methods for uncertainty estimation. Such errors
easily lead to an incorrect assessment of important variables and inter-
pretation ofmodel parameters such asweights and loadings. As the data
becomes more complex the confidence given to prediction and inter-
pretation results progressively diminishes. This is the case in genomics
and other areas of biologywith highlymultidimensional data consisting
of an underdetermined stochastic nature inherent in the biological net-
works themselves. In most cases, the results obtained from latent vari-
able modeling are not stable and hardly theoretically explainable. The
topic becomes even more complex when one realizes that there are
multiple PLS implementations [26] and that a controversy exists on
which implementation is the most adequate. The NIPALS algorithm
(also known as Wold-PLS) [27] is probably the most popular, yet
SIMPLS [28], Martens' PLS [29] and Bidiag2 PLS [30] have all been suc-
cessfully applied to regression and classification problems. Pell et al.
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pointed toward an internal inconsistency in PLS [31,32] which led to a
debatewithin the chemometrics community [33,34]. TheNIPALS incon-
sistency was later confirmed and its consequences on error estimation
illustrated on industrial process monitoring [35,36]. Recently, Indahl
[37] stated that the inconsistency does not exist and that the two
models are rotated version of each other.

In this paper we propose a unified framework to better understand
and discuss different latent variable modeling methods. For this we in-
troduce the basic sequence (BS) as a special case of the Krylov sequence.
The Krylov sequence has been used to interpret PLS regression
coefficients [38] and to provide a geometric interpretation of PLS [39].
Wewill take the BS as a building block in order to benefit from its prop-
erties and develop a novel unified framework for latent variablemodel-
ing allowing us to further study latent variable modeling methods. This
unified framework will firstly reduce confusion because different
implementations can be positioned in oneway or another in the unified
framework. Secondly, the framework helps to better understand
strengths and weakness of different implementations, guiding
towards a better interpretation of latent variablemodels, and providing
an understanding as to why it does not necessarily work for complex
data. Finally, the framework encourages better development of latent
variable models for more complex, and big, data.

In Section 2, we will first review the Krylov sequence and its histor-
ical perspective and uses, and from there we move on to explain the BS
as a special case of the Krylov sequence and as a building block of the
unified framework for as well single latent variable as multiple latent
variable models for a dataset (Section 3). Here, some important, com-
monly used implementations for PCA, PCR, and PLS will be positioned
in this framework to explore their strength and weakness. In
Sections 4 and 5, we will focus on the implication of different PLS
implementations on their predictive model performance and the inter-
pretation of their latent variable model space and parameters, respec-
tively. In-depth discussions for target projection and O-PLS methods
will be provided. Additionally, we will provide illustrative examples of
using the framework property to design a new technique for specific
purposes; in this case for the selection of important variables.

2. Unified framework for single latent modeling

In this section,wewill introduce a unified framework to fully explain
themost classical chemometric tools: PCA and PLS. The framework uses
basic sequence as a special case of the Krylov sequence in constructing a

single latent variable. In Section 3, it will be extended to multiple layers
with different data deflation types to complete the decomposition of X
into its latent variables bymeans of a set of multiple sequences, leading
to the unified framework of latent variable modeling methods.

2.1. Krylov sequence and its historical perspective

The current state of chemometrics can be better understood by ex-
amining the historical development of its analysismethods. The decom-
position of amatrix into its corresponding left and right singular vectors
and singular values is the cornerstone of most popular chemometrics
methods. Historically, one of the first methods proposed to perform
this taskwas the Krylov (also known as power) sequence [40]. The orig-
inal article can be traced to a Soviet publication in 1931 [41]. Yet the
concept of power sequences should be attributed to Chaim Müntz
whose work had been reported to the Académie des Sciences, in Paris
in 1913 by Emile Picard [42]. In the corresponding proceedings, one
can find the definition of this sequence extended for any kernel matrix
(e.g. for a covariance matrix). Simply stated, this work demonstrates
that using a set of n random directions, the principal components can
be obtained by successive orthogonalization and normalization steps.
For PLS, Krylov has been used to illustrate regression coefficients and
loading vectors as belonging to a spanned space of a special Krylov se-
quence [38][39].

2.2. United framework for single latent variable models

We introduce here the basic sequence (BS) as a special case of the
Krylov sequence and we will use this as the building block in order to
benefit from its properties in constructing a unified framework for a sin-
gle latent variablemodeling. Given amean-centered datasetX, the basic
sequence (BS) of length k is defined as a sequence of k basic vectors Z=
{z[0], z[1],…, z[k]} obtained by an iterative procedure to update the initial
vector z[0] with the cross-product matrix X′X and normalization
(2)–(3). This procedure converges on the dominant eigenvector of X′X.
The scalar k represents the number of iterations required satisfactory con-
vergence. As such, the basic sequence is a special case of a Krylov se-
quence (or the power method) [40,41] in which we replace a general
symmetric matrix with the rotation or cross-product matrix X′X. To
avoid confusion with other Krylov cases, we call it the basic sequence.
Throughout this paper, the sequence Z is also denoted as B[k](z[0], X).

z i½ � ¼ X
0
X

� �
z i−1½ � Basic rotationð Þ ð2Þ

z i½ � ¼ z i½ �

z i½ �k k Normalizationð Þ ð3Þ

As an inherited property of the Krylov sequence, within the se-
quence Z the basic vector z[i] is rotated progressively towards the
dominant eigenvector of the cross-productmatrixX′X [42]. The normal-
ization in (3) is required to consider the operation as a rotation. In this
procedure, moving from z[i − 1] to z[i] represents a basic rotation and,
as illustrated in our earlier work [50], the rotation speed depends on

the ratio of the dominant eigenvalue to the 2nd largest eigenvalue, jλ1 jjλ2 j.

The procedure of the basic sequence is illustrated in Fig. 2. The vector
z[0] can be initialized in many different ways; randomly, predefined by
user, or one of the rows from the data matrix X. The sequence length
(k) is also varied depending on the initialization.

To formulate a unified framework for a single latent vectorwe define
the score sequence, denoted as {t[1], t[2], …, t[m]}, and the loading se-
quence, denoted as {p[2], …, p[m]}, from the basic sequence via projec-
tion and regression steps, respectively. In particular, the score
sequence is defined by the orthogonal projection of the rows of X onto
the basic sequence {z[1], …, z[m]} and a loading sequence is obtained
by the ordinary least square (OLS) solution of the columns of X onto

Fig. 1. Tradeoff between interpretation and predictive power.
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