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Model population analysis (MPA) is a general framework for designing new types of chemometrics algorithms
that has attracted increasing interest in the chemometrics community in recent years. The goal of MPA is to
extract statistical information from the model, towards better understanding of the chemical data. Two key ele-
ments ofMPA are random sampling and statistical analysis. The core idea ofMPA is quite universalwith potential
applications in the fields, such as chemoinformatics, biostatistics and bioinformatics.
In this article, we review the development of MPA in chemometrics. We first present the key elements of MPA.
Then, the application of MPA in chemometrics is discussed, such as variable selection, model evaluation, outlier
detection, applicability domain definition and so on. Finally, the potential application areas of MPA in future re-
search are prospected.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Model population analysis (MPA) is a general framework for devel-
oping a new type of algorithm for modeling which uses statistical tools
to extract important information from the model [1]. The concept of
MPA was firstly proposed by Li et al. in the field of variable selection
[2]. It was found that better insight into the data can be obtained with
the aid of random sampling on both variable space and sample space.
Before that, a similar idea has been applied to outlier detection by Cao
et al. [3] with a discovery suggesting that normal samples and outliers
can be separated through their distributions in random sub-models.
Recent studies show that the application range of MPA should not be
restricted to variable selection [4–7] and outlier detection [3]. It is also
a useful tool for model comparison [8] and applicability domain
definition [9].

Chemometrics is a chemical discipline that uses mathematical and
statistical methods, to design or select optimal measurement proce-
dures and experiments, and to providemaximum chemical information
by analyzing chemical data [10]. Chemical modeling is an important
content in chemometrics, which is usually referred to as multivariate
calibration for regression models and pattern recognition for classifica-
tion models. The aim of chemical modeling is to develop a quantitative
relation between the variables, e.g., wavelengths,molecular descriptors,
and properties of interest and e.g., concentration values, molecular

activities. MPA, as a powerful tool for modeling, is promising in
chemometrics and related fields, because it provides better understand-
ing of the chemical data and improves prediction and interpretation of
the model.

It is worth noting that ensemble learning methods can also be for-
mulated into the framework of MPA. Ensemble learning methods,
such as bagging [11], boosting [12] and random forests [13], aggregate
a large number of models built with sub-datasets randomly generated
using a resampling method like bootstrapping. Then predictions are
made based on the principle ofmajority voting for classification or aver-
aging for regression [14]. In our view, part of the idea in ensemble learn-
ing methods is the same as that in MPA. However, MPA is an extension
of ensemble ideology and is more general. MPA is a framework, in
which different blocks can be filled. Firstly, the random sampling tech-
niques can be varied. Secondly, the generating of sub-models is not re-
stricted to sample space and variable space. Besides, various outputs
from sub-models can be considered. Finally, different statistical analysis
techniques can be applied on the outputs from a large population of
sub-models.

2. Model population analysis (MPA)

The core idea of MPA is to statistically analyze the performance of
a large population of sub-models generated from random sampling
and to extract interesting information from outputs of the
sub-models [1]. The key elements of MPA are random sampling
and statistical analysis. An important feature of MPA is that it
considers the output of interest not as a single value but a distribution
[15].
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2.1. The framework of model population analysis

MPA generally works as follows (Fig. 1):

(1) random sampling is used to randomly draw k sub-datasets
(e.g., 5000);

(2) for each sub-dataset, a sub-model is built;
(3) calculate an output of interest (e.g., prediction errors) for each

sub-model; and
(4) statistical analysis is applied on the outputs of sub-models.

Sub-models may be built using random sampling in sample
space, variable space, parametric space and model space. Accord-
ingly, the information extracted for MPA may be the performance
of samples, variables, parameters and models. This framework
has proven to be useful for developing algorithms for outlier
detection [3], variable selection [2], model evaluation [16] and
applicability domain definition [9]. MPA is a part of libpls package,
which is implemented in MATLAB and is freely available at www.
libpls.net.

2.2. Random sampling techniques

To generate a diverse population of sub-models, random sampling,
i.e., Monte Carlo sampling (MCS), techniques are usually applied in
MPA to obtain diversity of sub-sample sets or sub-variable sets,
among which Jackknife sampling (JNS), bootstrap sampling (BSS) and
binary matrix sampling (BMS) are the most popular ones. The core
ideas of these random sampling methods are displayed in Fig. 2,
where orange cells indicate objects that are selected and white cells
denote objects that are not selected.

JNS is a random sampling technique without replacement [17]. The
procedure of JNS is displayed in Fig. 2A, where each row of thematrices
denotes individual sampling. Assume that we are to randomly select 3
objects from 5 individual objects using JNS. In each row, 5 objects are
numbered and the sequence of objects is randomized (Fig. 2A, left).
Then, the first 3 objects are picked out (marked in orange) from the
pool of objects (Fig. 2A, left). On the right part of Fig. 2A, the selected
objects are marked as orange cells and are assigned in sequence. This
procedure realizes random sampling of 3 objects from 5 individual
objects with no replacement. In this figure, 4 rows of the matrices
denote 4 times of random sampling.

BSS is a random sampling technique with replacement [18]. Each
row of the matrices denotes individual sampling. In each sampling, ob-
jects are picked out from the pool of objects randomly and successively
as it is shown in Fig. 2B. The difference of BSS compared to JNS is that
samples are replaced during resampling. Consequently, some objects
may be selected more than once while the others may not be selected
(Fig. 2B left). There is an option either to retain the repeated objects or
just retain unique objects. In this schematic diagram, the unique objects
are retained and assigned in sequence by orange cells (Fig. 2B, right). A
modification of BSS is called weighted bootstrap sampling (WBS),
where samples with different possibilities [19] are selected.

BMS realizes random samplingwith the help of a binarymatrix [20].
The core idea of BMS is to randomly assign the same number of ‘1’ and
‘0’ to each column of the binary matrix (Fig. 2C, left). Each row of the
binary matrix corresponds to an individual sampling, where ‘1’ denotes
the samples that are selected for modeling and ‘0’ denotes the samples
that are not selected. The same number of “1” is assigned to each
column. Thus, BMS ensures that each sample is selected at the same fre-
quency after all individual samplings (4 individual samplings are shown
in Fig. 2C). The selected objects are marked as orange cells and are
assigned in sequence, as it is shown in Fig. 2C (right). Weighted binary
matrix sampling (WBMS) is a modification of BMS, where samples are
selected at different frequencies [7]. More details on the statistical
feature of different random sampling methods can be found in the
book [21].

Permutation (or randomization), unlike any random sampling
method, destroys the connection between samples and observations
[22]. A common way to realize it is to permute the values of responses
or observations among samples, so as to break the one-to-one
correspondence between responses and observations. It is also a useful
technique forMPA, because a variety of models, mostly ‘wrong’models,
can be built in this way. Useful information, such as variable importance
[5,23] and over-fitting [24,25], can be extracted through statistical
analysis of the variety of models in permutation.

2.3. Statistical analysis

The core idea ofMPA is statistical analysis of an interesting output, of
all the sub-models. With a population of sub-models generated by
random sampling methods, model comparison is performed by using
an empirical distribution derived from the interesting outputs. For
example:

1. The distributions of prediction errors for normal samples and outliers
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Fig. 1. The framework of model population analysis.
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