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Multivariate receptor modeling aims to unfold the multivariate air pollution data into components associated
with different sources of air pollution based on ambientmeasurements of air pollutants. It is nowawidely accept-
ed approach in source identification and apportionment. An evolving area of research in multivariate receptor
modeling is to quantify uncertainty in estimated source contributions as well as model uncertainty caused by
the unknown identifiability conditions, sometimes referred to as rotational ambiguity. Unlike the uncertainty
estimates for the source composition profiles that have been available in commonly used receptor modeling
tools such as positive matrix factorization, little research has been conducted on the uncertainty estimation for
the source contributions or the identifiability conditions. Bayesianmultivariate receptormodeling based onMar-
kov chain Monte Carol methods is an attractive approach as it offers a great deal of flexibility in both modeling
and estimation of parameter uncertainty and model uncertainty. In this paper, we propose a robust Bayesian
multivariate receptor modeling approach that can simultaneously estimate uncertainty in source contributions
as well as in compositions and uncertainty due to the unknown identifiability conditions by extending the pre-
vious Bayesian multivariate receptor modeling in two ways. First, we explicitly account for nonnegativity con-
straints on the source contributions, in addition to the nonnegativity constraints on the source compositions,
in both parameter estimation and model uncertainty estimation. Second, we account for outliers that may
often exist in the air pollution data in estimation by considering a heavy-tailed error distribution. The approach
is illustrated with both simulated data and real PM2.5 speciation data from Phoenix, Arizona, USA.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate receptor modeling is a collection of methods for identi-
fying major pollution sources/source categories and quantifying their
impacts based on ambient measurements of air pollutants. Estimation
of the source composition profiles (that can serve as chemical finger-
prints of pollution source categories) and contributions (amounts of
pollution) from different source categories have been the primary
concerns in multivariate receptor modeling. Hopke [6,8] and Tauler
et al. [23] provide comprehensive reviews of multivariate receptor
models. Despite their increasingly widespread use, however, there has
been little research on how to quantify uncertainty associated with
estimated source contributions as well as copingwith uncertainty asso-
ciated with the unknown identifiability conditions.

Statistically, multivariate receptor models may be viewed as latent
variables models because they assume that the correlations among the
observed multivariate data are induced by a set of latent variables
(source contributions). More specifically, they can be regarded as factor
analysis models, other than the nonnegativity constraints on source

compositions and contributions, in the sense that both the source
composition profiles (factor loadings) and the source contributions
(factor scores or latent variables) are unknown parameters to be esti-
mated based on the observedmultivariate data. Estimation of the source
compositions and contributions inmultivariate receptormodels is a sta-
tistically challenging problem because of the well-known factor inde-
terminacy (sometimes referred to as rotational ambiguity) problem
(parameterization is not unique without placing additional constraints)
even under the assumption of the known number of sources. As a mat-
ter of fact, the uncertainty (model uncertainty) associated with factor
indeterminacy or the unknown number of sources in multivariate
receptor modeling has been largely ignored, and there have been only
a handful of studies that addressed model uncertainty issues in multi-
variate receptor models (see, e.g., [17,20,21]). Park et al. [20,21]
discussed model uncertainty associated with the unknown number of
sources and factor indeterminacy in multivariate receptor models.
Paatero et al. [17] discussed capturing the uncertainty of positivematrix
factorization (PMF) analyses due to random errors and rotational ambi-
guity in the estimation of the source composition matrix under the
assumption of the known number of sources.

Also, the uncertainty estimation of the source contributions had not
receivedmuch attention unlike the uncertainty estimation of the source
composition profiles. Recently, the level of interest in uncertainty
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estimation of source contributions has increased dramatically. This
increased interest and appeal lies in, at least partially, the need for quan-
tification of uncertainty in source-specific exposures used in the assess-
ment of health effects associated with the major sources.

Bayesian multivariate receptor modeling naturally accounts for
uncertainty in estimated source contributions and source compositions
and has the capability to deal with model uncertainty in a more
coherent manner. Park et al. [20,21] proposed Bayesian approaches in
multivariate receptor modeling, based on Markov chain Monte Carlo
(MCMC) methods, that can simultaneously provide the uncertainty
estimates for the number of sources/identifiability conditions as well
as for the source contributions and compositions. In Park et al. [20,21],
the nonnegativity constraints were imposed only on the source compo-
sitions because the centered source contributions were utilized in
modeling and a multivariate Gaussian distribution was assumed for
the error term. As a matter of fact, not incorporating nonnegativity
constraints on the source contributions explicitly in modeling may
lead some source contribution estimates to be negative especially
when the true source contributions are small (see, e.g., [9]).

Also, outliers often exist in the air pollution data in practice, and the
use of Gaussian error distribution may not account for those outliers.
Paatero [16] discussed three possible reasons for outliers in the air
pollution data (aweak local source thatmay be visible only occasionally,
a laboratory error or a contamination in the field, and extreme values in
source contributions), and presented a robust factorization method
based on the Huber influence function that can handle the first two
kinds of outliers, omitting the third type. As mentioned in Paatero
[16], it is a question of definition whether the third type is considered
anoutlier or not because the patterns of composition for the observation
of the third type would still be the same as those for lower concentra-
tion samples. We also omit the third type of outliers from this discus-
sion. Gajewski and Spiegelman [3] developed estimators of source
composition profiles that are robust to outliers (outlying errors) by
minimizing the L2E objective function. Neither uncertainty estimation
of source contributions normodel uncertainty estimationwas discussed
in Gajewski and Spiegelman [3], however.

In this paper, we propose a Bayesian approach to robustmultivariate
receptormodeling that can account for nonnegativity constraints on the

source contributions and possible outliers (corresponding to the first
two types of outliers discussed in [16]) in both parameter estimation
and model uncertainty (caused by factor indeterminacy) estimation
under the assumption of the known number of sources. Section 2 intro-
duces robust Bayesian multivariate receptor models that account for
nonnegativity constraints on the source contributions and outlying
errors in modeling and estimation. Section 3 presents estimation of
parameter uncertainty and model uncertainty by MCMC. Section 4
contains the simulation study. In Section 5, the proposed method is
applied to the real PM2.5 speciation data for Phoenix, AZ, USA. Finally,
concluding remarks are made in Section 6.

2. Model

The basic physical model can be written as follows:

Yt ¼ AtP þ Et ; t ¼ 1;⋯; T ; ð1Þ

where Yt=(Yt1, Yt2,⋯, YtJ): tth observation consisting of concentrations
of J pollutants (chemical species) measured in time t, T=# of observa-
tions, q=# of major pollution sources, P: q × J source composition ma-
trix of which rows are the source composition profiles (Pk,, k=1,⋯, q),
Pk = (Pk1, Pk2, ⋯, PkJ): kth source composition profile consisting of the
fractional amount of each chemical species in the emissions from the
kth source, At = (At1, At2, ⋯, Atq): source contribution vector in time t
where Atk is the contribution from the kth source, and Et =
(Et1, ⋯, EtJ): measurement error in pollutant concentrations in time t.
Our main goal is to estimate, A and P along with their uncertainties.

Remark 1. Note that in reality source composition profiles in P of
Eq. (1) are not truly constant and may change over time. Therefore,
the errors in Eq. (1) actually represent bothmeasurement error and var-
iability in the source compositions. If the source composition profiles
are relatively stable over time, however, themeasurement error compo-
nent of the model assuming constant source composition profiles can
adequately handle random fluctuations of source emissions about sta-
ble central values. In such cases, the assumption of constant source com-
positions may not be unreasonable and the source composition profiles
that we estimate would correspond to the average source composition
profiles (where the average is taken over time). As a matter of fact,
one of the key assumptions of the PMF model is also that the composi-
tion of the emission sources is constant over the period of sampling at
the receptors (see, e.g., [10,17]). If there are systematic trends in the
source composition profiles (i.e., if the number of sources changes
and/or the source composition profiles systematically change over
time), then it will make more sense to analyze the subsets of data
(grouped according to different time periods) separately so that the
source composition profiles are approximately the same within each
time period (as in [10]).

It is well-known in multivariate receptor modeling and factor
analysis that parameters A and P cannot be uniquely estimated (even
under the assumption that q is known) without enforcing additional

Table 1
Candidate models in simulation.

Model number Source Pre-specified position
of zeros in P

1 1 2, 3
2 1, 4
3 5, 6

2 1 2, 4
2 1, 5
3 3, 6

3 1 4, 6
2 2, 5
3 3, 7

Table 2
Log of marginal likelihoods (LogMD) for three candidate models estimated by Method T assuming a heavy-tailed distribution (T4) and Method G assuming a Gaussian distribution for
errors when the data contain outliers.

Dataset Model number

1 2 3 Selected model by Method T Selected model by Method G

T G T G T G

1 −2781 −3719 −3386 −4178 −2919 −4190 1 1
2 −2647 −3315 −3312 −3549 −3186 −3803 1 1
3 −2588 −3239 −3178 −3684 −2724 −3288 1 1
4 −2749 −3265 −3310 −3763 −2889 −3241 1 3
5 −2760 −3485 −3335 −3725 −2864 −3557 1 1

Notes: 1. Only 5 cases are shown for illustration. 2. ‘T’ stands for Method T and ‘G’ stand for Method G. 3. The largest LogMD among the three models obtained by each method for each
dataset is shown in bold.
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