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Atmospheric trace-gas inversion refers to any technique used to predict spatial and temporal fluxes using mole-
fraction measurements and atmospheric simulations obtained from computer models. Studies to date are most
often of a data-assimilation flavour, which implicitly consider univariate statistical models with the flux as the
variate of interest. This univariate approach typically assumes that the flux field is either a spatially correlated
Gaussian process or a spatially uncorrelated non-Gaussian process with prior expectation fixed using flux inven-
tories (e.g., NAEI or EDGAR). Here, we extend this approach in three ways. First, we develop a bivariate model for
the mole-fraction field and the flux field. The bivariate approach allows optimal prediction of both the flux field
and the mole-fraction field, and it leads to significant computational savings over the univariate approach.
Second, we employ a lognormal spatial process for the flux field that captures both the lognormal characteristics
of the flux field (when appropriate) and its spatial dependence. Third, we propose a new, geostatistical approach
to incorporate the flux inventories in our updates, such that the posterior spatial distribution of the flux field is
predominantly data-driven. The approach is illustrated on a case study of methane (CH4) emissions in the
United Kingdom and Ireland.
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1. Introduction

Atmospheric trace-gas inversion refers to any technique used to pre-
dict spatial and temporal fluxes of a gas from observations of mole frac-
tions. Since mole-fraction measurements are affected by weather
patterns that are time varying, there is no straightforward relationship
between the observations and the fluxes. The relationship, termed a
‘source-receptor relationship’ (SRR), is typically obtained by simulating
from a computer model, such as a Lagrangian Particle Dispersion Model
(LPDM), which maps the fluxes to the mole fractions [1]. The SRR can be
characterised through a bivariate function b,(s, u) where the spatial
locations s, u € R? are in a given domain of interest, D C R?, and
t€({1,2,...}is a discrete-time index.

Fig. 1, top-left panel, shows the UK and Ireland methane (CH,) total
fluxes by grid cell, in units g s~ !, obtained from a combination of flux in-
ventories. Here, the component inventories are principally the National
Atmospheric Emissions Inventory (NAEI) [2] and the Emissions Data-
base for Global Atmospheric Research version 4.2 (EDGAR) [3]; see [4]
for details. Fig. 1, top-right panel, shows an evaluation of b(s, u),
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in units s ng~ !, of methane fluxes, for s located at a mole-fraction
monitoring station at Angus, Scotland (TTA), where u takes values on a
discrete lattice, and where t = 1 (01 January 2014 at midnight). Fig. 1,
bottom panel, shows the two-hourly averaged observations in parts per
billion (ppb) at TTA, following background-removal (see Section 4.2 for
details), for all of January 2014. In atmospheric trace-gas inversion, the
aim is to recover a flux map, such as that in Fig. 1, top-left panel, from
time-series observations taken at various monitoring stations and from
the collection of atmospheric simulations (one such is shown in Fig. 1,
top-right panel) that establish the SRR.

Atmospheric trace-gas inversion is an ill-posed problem. Con-
sequently, “small uncertainties in the observational data correspond to
much higher uncertainty in the emission[s]” [5]. However, in addition
to observation and flux-field uncertainties, there is a third source of un-
certainty arising from the use of an atmospheric model that does not
perfectly match the true SRR due to physical parameterisations, solver
discretisations, etc. Sometimes this third term is called the discrepancy
term, and failure to acknowledge it can lead to over-confident predic-
tions [6,7]. Until very recently, this discrepancy was not considered
separately from the observation error; see [4]. However, it is crucial to
distinguish between the errors due to observations and those due
to model misspecification, as these are likely to have different statistical
properties.
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Fig. 1. Top-left panel: Total flux by grid cell in g s~ ! obtained by combining methane inventories (see [4] for details) for January 2014. Top-right panel: The source-receptor relationship on
01 January 2014 at 00:00, b1 (st74,"), obtained from the UK Met Office's Lagrangian Particle Dispersion Model (LPDM), Numerical Atmospheric-dispersion Modelling Environment (NAME),
where sy is the coordinate vector of the Angus measurement station (TTA), in Scotland. Also shown are the three other stations used in this study, Mace Head (MHD), Ridge Hill (RGL),
and Tacolneston (TAC). Bottom panel: Measurements of methane mole fraction in parts per billion (ppb) at TAC for January 2014, following background-removal (black dots), together
with a straightforward prediction (red line) using NAME and the methane flux inventory. Each time step corresponds to an interval of 2 h.

A critical contribution of our work is to formalise the insight in [4]
and treat the mole-fraction field as a second variable of interest. The
consideration of modelling a mole-fraction field in addition to the flux
field through a discrepancy term results in a bivariate model (see [8]
for a recent review on such models). The bivariate model brings two ad-
vantages to this problem of trace-gas inversion: The locations at which
the mole-fraction field is modelled need not coincide with the data
points. This in turn allows the predictive distribution of mole fraction
at any unobserved locations to be found, and then averaged over any
subset of the spatio-temporal domain, with relative ease (provided
the SRR is available for these locations/domain). The other advantage
is that the decoupling leads to computationally efficient methods in spa-
tial statistics that can be used to scale up the inversion to large, remote-
sensing datasets.

Another contribution of our work is to introduce the lognormal spa-
tial process as a prior distribution for the flux field. This model acts as a
bridge between the two sides of the dichotomous literature that either
assumes spatial (possibly truncated) Gaussian-process priors (e.g., [9])
or spatially uncorrelated lognormal priors (e.g., [10]). A lognormal spa-
tial process is attractive, as it is able to capture both (i) the nonnegativity
and heavy tails in the distribution of the flux (valid for some trace gases
such as methane) and (ii) the spatial correlation of the flux field. We
show that expectations and covariances for both the flux field and the
mole-fraction field can be obtained analytically if the flux field is defined
as a lognormal process, by directly applying results from the univariate
case ([11],[12], p. 135).

The third contribution of our work is to propose a new way to carry
out assimilation in atmospheric trace-gas inversion. Frequently, the
prior expectation of the flux process is set from one or more inventories
that are many times unreliable and that may have unquantifiable effects
on a posterior assessment. Here, we only use characteristics of the inven-
tories, namely the spatial length scales and the marginal variance, whilst
setting the prior expectation to be spatially constant. In this way, the in-
ventory fluxes are not used directly in the assimilation, and the spatial
distribution of fluxes obtained from the posterior expectation will be
predominantly data-driven. Our contribution addresses a concern in
[13], Section 5.2, that suggests that such an approach is difficult when
prior distributions are non Gaussian.

The article is structured as follows. In Section 2, we discuss the three
contributions outlined above. In Section 3, we detail our approach to in-
ferring the fields of interest using a combination of approximate infer-
ential methods. The proposed framework is then assessed in Section 4,
first in a study in one-dimensional space with simulated datasets, and
then for emissions prediction in the UK and Ireland using the four mea-
surement stations illustrated in Fig. 1, top-right panel. Section 5 contains
conclusions and an outline of future research directions.

2. Theory
The notation we use corresponds to that commonly found in the

spatial-statistics literature (e.g., [14]). Here, stochastic processes are de-
noted using regular typeface, whilst bold typeface is used to denote
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