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Close process monitoring (i.e., detection and identification of disturbances) is important to achieve high process
efficiency and safety. The Tennessee Eastman process is an extensive benchmark dataset for fault detection and
identification, but it is only representative for continuous processes because it does not contain the inherent non-
stationarity that complicatesmonitoring of batch processes. Nevertheless, batch processes also play an important
role in many types of industry. This paper therefore presents an extensive reference dataset for benchmarking
data-driven methodologies for fault detection and identification in batch processes.
The original Pensimmodel [10] is expandedwith sensor noise. By changing the properties of the initial conditions
and/or model parameters, four subsets of different complexity are generated, each containing 400 batches with
normal operation. To correctly assess the fault detection and identification in batch processes, 15 faults are
simulated with various amplitudes and onset times for a total of 22,200 faulty batches for each subset, or
90,400 batches in total.
Analysis of the data indicates that the presented types of process faults and their various amplitudes in each of the
four subsets present a suitable benchmark for fault detection and identification in batch processes. The dataset is
freely available at http://cit.kuleuven.be/biotec/batchbenchmark.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Modern process industry sees a major push towards safe, sustain-
able, and more profitable operation. Timely detection and diagnosis of
process faults, before they have the opportunity to influence process
safety and/or product quality, are of utmost importance to maintain
safe operation and reduce or even avoid productivity losses [81,63,33].
Therefore, considerable research attention has been paid to the area of
process monitoring (also called Fault Detection and Identification/
isolation; FDI) over the last few decades [63,33,25].

The existing process monitoring approaches can be categorized as
either model-based or data-driven [94,33].

A model-based monitoring scheme employs available first-
principles models of the process under study (such as laws of motion,
mass balances, energy balances, known reaction schemes,…) to detect
deviations from normal operation. One of the drawbacks of model-
based process monitoring is that it is limited to well-known systems
of limited size [94]. Typically, first-principles models are available for
mechanical or electrical systems. Chemical, biochemical, steel, pulp
and paper, or semiconductor processes contain too much uncertainty

(e.g., imperfect mixing, biological variability, …) or are of a too large
scale to build accurate-enough first-principles models in an acceptable
time [94,81,91,33].

Data-driven process monitoring, on the other hand, uses only
available process measurements to characterize the nominal process
operation. Next, Statistical Process Monitoring (SPM) is used to detect
deviations from this normal situation. A detailed overview of active
research directions and successful applications of SPM can be found in,
i.a., Venkatasubramanian et al. [80], Kourti [46,47], Hwang and Kim
[42], Bogomolov [12], MacGregor and Cinar [57], Qin [63], Aldrich and
Auret [5], Ge et al. [33], and Ding [25].

SPM algorithms were originally developed for continuous processes
because these processes operate around a steady state regime. Batch
processes, on the other hand, present a much greater challenge for
monitoring owing to their inherent non-stationarity, finite duration,
non-linear response, and batch-to-batch variability [23,71,28]. Further-
more, batch processes commonly suffer from a lack of suitable in-line
instrumentation in practice [23]. As a result, most novel techniques for
fault detection and identification are still developed almost exclusively
for continuous processes. Nevertheless, batch processes are widely
used in a broad range of sectors, such as the chemical, pharmaceutical,
or life sciences industries [28]. Therefore, the development of proper
monitoring tools for batch processes is important [80]. In their re-
view of SPM for batch processes, Yao and Gao [91] and Qin [63]
reach the conclusion that more research is needed before advanced
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SPM methods (such as those capable of dealing with inherent non-
linearities of batch processes) can be applied in practice.

To properly assess the performance of various fault detection and
identification methodologies, reliable and extended benchmarks are
needed. For continuous processes, the Tennessee Eastman process pub-
lished by Downs and Vogel [26] is widely used to benchmark various
control and monitoring strategies [92,24]. Chiang et al. [17] published
an extended reference set for fault detection and identification contain-
ing normal operation data and data from 22 different types of process
upsets, available at http://web.mit.edu/braatzgroup/TE_process.zip.
The relevance of a proper, extended benchmark is attested by the 157
citations of Downs and Vogel [26] indexed on Scopus in the period Jan-
uary 2014–May 2015 (17 months). Of these, 124 papers directly con-
cern process monitoring.

When investigating the most important SPM techniques for batch
processes as reviewed by Venkatasubramanian et al. [80]; Kourti [46];
MacGregor and Cinar [57]; Qin [63]; Aldrich and Auret [5], and Ge et
al. [33], no benchmark comparable to the Tennessee Eastman process
exists for batch processes, either in complexity (number of upsets) or
frequency of use. Instead, most authors employ one or more small
datasets.

For example, Nomikos and MacGregor [60,61] used a set of 51 nor-
mal and 2 faulty batches of a styrene-butadiene rubber (SBR) polymer-
ization reaction generated with the model of Broadhead et al. [13] for
their initial development of Multi-way Principal Component Analysis
(MPCA) and Multiway Partial Least Squares (MPLS) for batch process
monitoring. In Nomikos and MacGregor [62], they employed a set of
55 industrial two-stage polymerization batches provided by DuPont,
of which 8 exhibit bad quality. The same DuPont dataset was used by
Rännar et al. [65] to develop hierarchical PCA monitoring. Wold et al.
[84] use data from an industrial fermentation to develop their alterna-
tive MPCA approach. Dahl et al. [23] employ data from 39 batch runs
of an autoclave polymerization.

In their presentation of Batch Dynamic PCA (BDPCA) and Batch Dy-
namic PLS (BDPLS), Chen and Liu [15] used the SBR andDuPont datasets
in addition to a set of 50 normal and 1 faulty batch of the CSTR problem
originally presented by Luyben [56]. Choi et al. [21] also used the SBR
dataset and a simulated batch MMA polymerization [1] of 100 normal
and 3 faulty batches in the development of their autoregressive PCA
(ARPCA) approach.

The SBR and DuPont datasets are also used in the review of Van
Sprang et al. [78] and the comparison between global, evolving, and
local PCA models for monitoring by Ramaker et al. [64]. These two pa-
pers also included three additional datasets: (i) an industrial multi-
stage polymerization set of 47 normal and 3 abnormal batches (again
provided by DuPont) [45], (ii) a collection of 67 normal and 3 faulty
runs of an industrial batch polymerization of PVC [74], and (iii) a bio-
chemical conversion set of 27 normal batches and 1 faulty batch [9].
Ramaker et al. [64] also employed 24 normal and 2 faulty batch runs
of a fat hardening process originally presented by Smilde and Kiers
[72] as a sixth dataset.

Lee et al. [50] generated 51 normal and 3 faulty batches using the
Pensim simulated penicillin fermentation process of Birol et al. [10] to
demonstrate SPM via Kernel PCA (KPCA). Jia et al. [43] used two
datasets for Batch Dynamic KPCA (BDKPCA): a toy dataset (50 normal
batches, 2 faulty) and Pensim (45 normal batches, 2 faulty).

The 2-dimensional DPCA (2D-DPCA)was developed by Lu et al. [55],
Yao and Gao [89,90], and Yao et al. [88] using a toy problem, but the ex-
tensions towards Gaussian Mixture Model 2D-DPCA (GMM-2D-DPCA)
[87], and 2-dimensional DKPCA and 2-dimensional Kernel Hebbian Al-
gorithm (2D-KPCA and 2D-KHA) [98] are also tested on Pensim data
of, respectively, 50 normal and 50 faulty batches, and 5 normal and 5
faulty batches.

Chen and Chen [14] used the Pensim (50 normal batches, 1 faulty)
and SBR datasets to introduce Multi-Hidden Markov Tree-based MPCA
(MHMT-MPCA) monitoring of batch processes. Zhao et al. [100] test

Generalized Moving Window PCA (GMWPCA) via Pensim (20 normal
batches) and an injection molding process (40 normal batches).
Kulkarni et al. [48] combined PCA with Generalized Regression Neural
Networks (PCA-GRNN), employing 48 normal and 4 faulty runs of the
protein synthesis of Lim et al. [52] and 50 normal and 8 faulty batches
of the penicillin production process of Lim et al. [53].

Recently, Multi-Scale PCA (MSPCA) for batch processes was pro-
posed by Alawi et al. [2] and tested on 40 normal and 3 faulty Pensim
batches.

Zhao and Shao [102], Zhang et al. [97], and Yu [95] all employed 100
normal and 3 faulty Pensimbatches for their presentation of batchmon-
itoring using, respectively Multiway Fischer Discriminant Analysis
(MFDA), Kernel FDA (KFDA), and Multiway Kernel Localized FDA
(MKLFDA). Yan et al. [86] proposed Semi-supervised Mixture Discrimi-
nant Monitoring (SMDM) as an improvement on MKLFDA using data
form an injection molding process.

Lee et al. [49] and Yoo et al. [93] respectively generated 50 normal
and 1 faulty, and 60 normal and 2 faulty Pensim batches to test SPM
via Multi-way Independent Component Analysis (MICA). [3] conducted
a more extensive test of MICA using Pensim (15 normal, 2 faulty) and
DuPont datasets, and a third set of 40 normal runs and 1 faulty run of
a simulated semi-batch production of polyol lubricant [96]. They later
employ the same set of 15 normal and 2 faulty Pensim batches and
the SBR dataset for Dynamic ICA (DICA) for batch monitoring [4].
Pensim was also used to generate 31 normal and 4 faulty batches for
benchmarkingKernel ICA (KICA) by Tian et al. [75]. Ge and Song [31] de-
veloped a combinedmultilevel ICA-PCAmethodology using the DuPont
dataset. Zhao et al. [99] introduced combined Kernel ICA-PCA (KICA-
PCA) employing data from Pensim (30 normal batches, 3 faulty) and
from a three-tank system (18 normal batches, 2 faulty).

Zhao et al. [101] tested their dissimilarity measures for batch moni-
toring on a toy dataset and on 101 normal and 3 faulty Pensim batches.
Hu and Yuan [41] generated 250 normal and 4 faulty Pensim batches for
SPM bymeans of Tensor Locality Preserving Projections (TLPP) and also
validated his procedure on 16 industrial batches. Alvarez et al. [6] used
187 normal and 444 faulty (8 types of faults at different magnitudes)
Pensim for batch monitoring in the original measurement space—the
largest Pensim dataset encountered by the authors.

An industrial dataset from a semiconductor etch process [83]
consisting of 107 normal and 20 faulty batches is used in the works of
Chen and Zhang [16] and Ge et al. [30,33] to respectively test Gaussian
Mixture Models (GMM) and Support Vector Data Description (SVDD)
for batch monitoring.

Fault identification for batch processes—if even discussed—mostly
occurs after fault detection via analysis of contribution plots, despite
their suffering from fault smearing, which possibly leading to incorrect
diagnosis [82,77]. A few exceptions exist, such MKLFDA, where fault
detection and identification occur simultaneously [95].

Classificationmodels present an alternative approach to fault identi-
fication: given a set of known process upsets of various types, themodel
assigns the most probable cause to a detected new upset.

Cho and Kim [19,20] proposed an FDA-based fault classification
using data from a simulated PVC polymerization. Hereto, they generat-
ed a set of 44 normal batches, and3500 faulty batches of 5 types because
their approach requires a number of faulty batches for classifier training
greater than the dimensionality of the batches (in their case, the num-
ber of monitored sensors times the number of time points). Cho [18]
tested a KFDA classifier for fault identification on two datasets: the
same PVC polymerization and Pensim (60 faulty batches, 5 types). Li
and Cui [51] also employ 60 faulty Pensim (5 types) in their work on
Feature Vector Selection FDA using Nearest Feature Lines (FVS-FDA-
NFL). No information is provided by Cho and Kim [19,20], Cho [18], or
Li and Cui [51] on the type of the employed process upsets, theirmagni-
tude, or their onset time.

A total of 150 Pensim batches (50 of each of three types of process
upsets) was used by Monroy et al. [59] to test fault identification via
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