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A soft sensor predicts the values of some process variable y that is difficult tomeasure. Tomaintain the predictive
ability of a soft sensor model, adaptation mechanisms are applied to soft sensors. However, even these adaptive
soft sensors cannot predict the y-values of various process states in chemical plants, and it is difficult to ensure
the predictive ability of suchmodels on a long-term basis. Therefore, we propose a method that combines online
support vector regression (OSVR) with an ensemble learning system to adapt to nonlinear and time-varying
changes in process characteristics and various process states in a plant. Several OSVR models, each of which
has an adaptation mechanism and is updated with new data, predict y-values. A final predicted y-value is calcu-
lated based on those predicted y-values and Bayes' rule. We analyze a numerical dataset and two real industrial
datasets, and demonstrate the superiority of the proposed method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Soft sensors can predict process variables that are difficult to mea-
sure online, and have been widely used in industrial modeling [1–3].
The relationship between a difficult-to-measure variable (y-variable)
and easy-to-measure variables (X-variables) is constructed theoretical-
ly or statistically. In practice, data-driven soft sensors, in which models
are built using statistical methods and databases, are mainly employed.
By inputting values of the X-variables into the constructed model, the
values of a y-variable can be predicted online, because the X-variables
are measured in real time and the prediction is very fast.

However, soft sensors have some practical problems. One crucial
issue is the degradation of the soft sensor models [4]. The predictive ac-
curacy of soft sensors decreases gradually, a result of the changing state
of a chemical plant due to factors such as catalyzing performance loss,
and sensor and process drift.

To reduce this degradation, adaptation mechanisms can be applied
to soft sensors [5]. For example, new X-variable data are measured in
a chemical plant and used to reconstruct the soft sensor models and
predict the y-variables. Kaneko and Funatsu categorized the degrada-
tion of soft sensor models and adaptive soft sensor models, such as
moving window (MW), just-in-time (JIT), and time difference (TD)
models [4]. MWmodels [6,7] are constructed with a recently measured
dataset; JIT models [8–10] are constructed by assigning larger weights
to the data that are most similar to the prediction data; and TD models

[11,12] are constructed by considering the time difference of a y-
variable and that of the X-variables. Ensemble learning can be applied
to adaptive models [13,14]. In addition, when data distributions are
multimodal, multiple modeling approaches [15,16] can be combined
with adaptive models.

The characteristics of MW, JIT, and TD models have been discussed
and analyzed using numerical and real industrial data [4]. Thesemodels
are not entirely sufficient when rapid temporal changes occur in a pro-
cess, and thus, novel techniques are required.

We previously combined an online support vector regression
(OSVR) method [17], in which a nonlinear SVR [18] model is efficiently
updated (see Appendix A), with a time variable [19], and discussed the
optimization of the SVR hyperparameters for the OSVR model. The SVR
hyperparameters can be selected using cross-validation on training data
of reasonable length, and the OSVR model with this time variable can
adapt to abrupt changes in process characteristics, even when the rela-
tionship between X and y is nonlinear and time varying [20].

However, one soft sensor model cannot accurately predict y-values
for all process states in a chemical plant. An OSVR model must first set
the SVR hyperparameters C, ε, and γ using a training dataset (see
Appendix A), and the resulting model will be able to predict y-values
for process states that are similar to that of the training data. However,
when the process state changes significantly, the predictive ability of
the OSVR model decreases.

We therefore propose a combination of more than one OSVRmodel,
and use ensemble learning to allow the soft sensors to adapt to various
process states in a chemical plant. Multiple OSVRmodels with different
hyperparameters predict multiple y-values. We combine the predicted
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y-values based on the current predictive ability of each OSVRmodel and
Bayes' rule, which has been actively applied to soft sensor analyses [16,
21–23], to produce afinal predicted y-value. The proposedmethod is re-
ferred to as ensemble online support vector regression (EOSVR). The
predictive ability of multiple OSVR models updated with new data,
and weighted appropriately, allows the accurate prediction of y-values
in each process state. In addition, the standard deviation of the predict-
ed y-values enables us to estimate the prediction error in the final pre-
dicted y-value for each process state.

To verify the effectiveness of the proposed method, we analyze nu-
merical simulation data in which the relationships between X and y
are strongly nonlinear and change from moment to moment. The per-
formance of the proposed model is compared with that of other tradi-
tional adaptive models. Then, the proposed method is applied to two
real industrial processes, an alkylaluminum production process and an
exhaust gas denitration process.

2. Method: EOSVR

2.1. Offline analysis

In the proposed EOSVR method, multiple combinations of the SVR
hyperparameters C, ε, and γ (see Appendix A) are optimized offline
for various states in a plant. The basic concept of the optimization of
multiple combinations of SVR hyperparameters is shown in Fig. 1.
First, the window size ws is set, and then the SVR hyperparameters
are optimized by moving the window. The value of ws is relatively un-
important, as OSVRmodels are insensitive to this parameter [20]. A cer-
tain size of ws suffices for OSVR models. The data in each window are
then as follows:

X1; y1ð Þ; X2; y2ð Þ;…; Xi; yið Þ;…; Xn; ynð Þ ð1Þ

where Xi ∈ Rws × v and yi ∈ Rws × 1 are the ith data set of the X-variables
and that of a y-variable, respectively (v is the number of X-variables).
When the window is moved by h data points, the ith dataset is

from the h(i − 1) + 1th data point to the hith data point. For each
dataset, the SVR hyperparameters are optimized. The optimized
hyperparameters are represented as follows:

C1; ε1;γ1ð Þ; C2; ε2;γ2ð Þ;…; Ci; εi;γið Þ;…; Cn; εn;γnð Þ: ð2Þ

To optimize the SVR hyperparameters, we use an exhaustive grid
search through the candidates of each hyperparameter, and the perfor-
mance is measured by cross-validation on the training data. Duplicate
combinations of the SVR parameters are removed, leaving the following
m combinations of parameters:

C1; ε1;γ1ð Þ; C2; ε2;γ2ð Þ; …; Cm; εm;γmð Þ: ð3Þ

2.2. Online analysis

Fig. 2 shows the basic concept of prediction using the proposed
method. New X-variable data x(t) at time t are input into the m OSVR
models; the models predict y-values as follows:

yp;1 tð Þ ¼ f 1 x tð Þð Þ
yp;2 tð Þ ¼ f 2 x tð Þð Þ

⋮
yp;m tð Þ ¼ f m x tð Þð Þ;

ð4Þ

where f1, f2,…, fm are the OSVRmodels.We then combine yp,1(t), yp,2(t),
…, yp,m(t) to obtain a final predicted y-value yp(t) using Bayes' rule [22].
When S is the current (unobserved) state in a plant and Mi is the ith
OSVR model, the probability of Mi given S, P(Mi|S), is required to com-
bine the prediction results of the m OSVR models. Given P(Mi|S), the
final predicted y-value yp(t) is obtained as follows:

yp tð Þ ¼
Xm
i¼1

P MijSð Þyp;i tð Þ: ð5Þ

Fig. 1. Basic concept of optimizing themultiple combinations of SVR hyperparameters. Datasets (X1, y1), (X2, y2),…, (Xi, yi),…, and (Xn, yn) are used to optimize the SVR hyperparameters
(C1, ε1, γ1), (C2, ε2, γ2), …, (Ci, εi, γi),…, and (Cn, εn, γn), respectively.
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