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Batch or fed-batch process monitoring is a challenging task because of its characteristics such as batch-to-batch
variations, inherent time-varying dynamics, and multiple operating phases. Thus, a new batch process monitor-
ing method based on just-in-time learning (JITL) and multiple-subspace principal component analysis (MSPCA)
is developed. Based on offline one batch normal data, the division algorithm of multiple subspace is proposed, in
whichmutual information (MI) and K-means are employed to derive the segmentation rule of variable subspace
and then the variables are divided into several subspaces according to the segmentation rule of variable subspace.
At online monitoring, the training data set for modeling is obtained by JITL and separated into each subspace
according to the segmentation rule of variable subspace. Principal component analysis is employed to build the
model in each subspace, and all components are retained to calculate T2 statistics. A unique probability index is
obtained by Bayesian inference (BI) as the decision fusion strategy of T2 statistics of all subspaces. A simple
numerical example is used to show the advantages of the proposedMSPCAmethod. The feasibility and effective-
ness of JITL–MSPCA is demonstrated by fed-batch penicillin fermentation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Batch and fed-batch processes play an important role in the produc-
tion of high-quality, low-volume products, such as special chemicals,
food, pharmaceutical, and semiconductor. Quality consistency of prod-
ucts and safe operation of batch process must be ensured. The charac-
teristics of batch processes, such as finite duration, batch-to-batch
variations, inherent time-varying dynamics, and multiple operating
phases, differ from that of a continuous process. Hence, traditional con-
tinuous process monitoring methods cannot be used in batch process
monitoring, and such characteristics of batch processes make it difficult
to establish a monitoring model for them.

Multi-way principal component analysis (MPCA) and multi-way
partial least squares (MPLS) are two of the most popular methods
used for batch processmonitoring [1–4]. Conventional multivariate sta-
tistical processmonitoringmethods based onMPCA orMPLS rely on the
assumption that batch process data come from a single operating phase.
However, batch processes are usually conducted in a sequence of steps,
which are called multiple operating phases. Significantly diverse vari-
able correlation structures exist at different phases. Traditional MPCA
and MPLS methods consequently fail to detect fault in batch processes.
Numerous stage-based approaches have been developed to deal with

the multiple operating phases of batch processes [5–8]. However, the
number of operational stages needs to be specified by user, and a biased
estimation may affect the monitoring accuracy.

Aside from the multiple-operating phase problem, the inherent
time-varying dynamics of batch process has posed difficulties to
batch process monitoring methods. An adaptive methodology,
which mainly includes recursive strategy and moving window
(MW) technique, is generally integrated in various monitoring
methods to trace the inherent time-varying dynamics [9–12]. Lee
used MPCA with variable-wise unfolding and time-varying score co-
variance structures to preserve the dynamic relations of data [9].
Rännar proposed recursive hierarchical adaptive principal compo-
nent analysis (HPCA) algorithm [10]. Both methods use local data
structures, which can solve the inherent time-varying dynamics
and multiple-operating phase problems. However, local data struc-
tures require even phase durations in batch process data. Given
that phase durations differ from batch to batch, the two monitoring
methods may not function well. As an alternative solution, just-in-
time learning (JITL) strategy has attracted increasing attention in
soft sensor modeling and process monitoring fields [13–19]. Cheng
[14] and Ge [15] applied multivariate statistical methods to analyze
the residuals between predicted outputs and process outputs of
JITL. Hu [19] integrated an MW strategy with JITL to analyze the se-
lected relevant samples for processmonitoring directly. Unlike tradi-
tional local modeling methods, which are built offline, JITL-based
local models are constructed online, which only choose the most rel-
evant points and use them for modeling. Therefore, the current state
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of the process can be well tracked by the JITL method. Meanwhile,
the inherent time-varying dynamics and uneven length phase dura-
tion problems in batch processes can be solved.

Multiple-variable subspace methods that focus on continuous
processes have been introduced in recent years [20–26]. Ge proposed
a linear subspace method for nonlinear process monitoring [24]. PCA
decomposition method was used for linear subspace construction, and
the original process variables were divided into k + 1 overlapped vari-
able subspace, where k is the number of retained principal components.
Tong proposed a four-subspace construction method [26], which uses
PCA to derive four distinct and explicable subspaces from the original
process variables; each subspace serves as a low-dimensional represen-
tation of the original data space. Multiple-variable subspace methods
can reduce the complexity of process analysis. However, the character-
istics of batch process are distinctly different from those of continuous
processes, such as their inherent time-varying dynamics and multiple
operating phases. Therefore, further application of multiple-subspace
methods is hindered to batch processes.

In this study, JITL is introduced into multiple-subspace principal
component analysis (MSPCA) for batch process monitoring. In compar-
ison to the strategies of Tong and Ge, which use PCA to derive multiple-
variable subspace, a new division algorithmofmultiple subspace is pro-
posed. A relevantmatrix is defined according to themutual information
(MI) of any two variables based on the normal data of batch process.
According to the clustering result of the relevant matrix by K-means
clustering algorithm [27], a variable subspace segmentation rule is
developed, and the variables are divided into several subspaces (two
subspaces are employed in this study.). At online monitoring, relevant
samples are selected from the historical data set by JITL, which can
well track the state of the process; thus, the inherent time-varying dy-
namics and multiple operating phases can be effectively handled. The
relevant samples are separated into each variable subspace according
to the variable subspace segmentation rule, with each variable subspace
serving as a low-dimensional representation of the original data space.
PCA is employed to build the model in each variable subspace, and all
components are retained to calculate T2 statistics. Thus, all local infor-
mation can be sufficiently utilized. Bayesian inference (BI) strategy is
used to combine T2 statistics generated from each subspace. By integrat-
ing JITL andMSPCA, theproposedbatchprocessmonitoringmethod, i.e.,
JITL–MSPCA, can accurately detect different types of batch process
faults.

The rest of this paper is divided into several sections. Section 2
presents PCA, MPCA [9], and HPCA [10]. Section 3 elucidates JITL–
MSPCA and the monitoring procedure. Section 4 discusses the nu-
merical process used to show the advantage of the proposed
MSPCA method and the fed-batch penicillin fermentation employed
to demonstrate the feasibility and effectiveness of JITL–MSPCA.
Finally, Section 5 concludes.

2. Preliminaries

This section reviews PCA, MPCA [9], and HPCA [10]methods for pro-
cess monitoring. PCA is compared with the proposedMSPCAmethod in
a simple numerical process. MPCA and HPCA methods are compared
with JITL–MSPCA in fed-batch penicillin fermentation.

2.1. PCA

Considering the matrix X(m × n) with m samples and n variables,
PCA is defined as follows:

X ¼ TP̂T þ E; ð1Þ

where P̂ n� zð Þ is the loading matrix, T(m × z) is the score matrix,
E(m × n) is the residual matrix, and z is the number of principal
components. P̂ n� zð Þ can be obtained from the singular value

decomposition of the covariance matrix C, which is expressed as
follows:

C ¼ XTX
m−1

¼ PΛPT
; ð2Þ

where Λ= diag(λ1,λ2⋯,λJ) is the eigenvalue matrix. Eigenvalues are ar-
ranged in descending order. P is separated into two parts, i.e., P̂ n� zð Þ
and eP n� n−zð Þð Þ, which are called PCS and RS, respectively.

T2 and SPE are two statistics for online monitoring that correspond
to PCS and RS, respectively. They can respectively be calculated as
follows:

T2 ¼ xP̂Λ−1
z P̂TxT ð3Þ

and

SPE ¼ eeT ; e ¼ x−xP̂P̂T
; ð4Þ

where Λz = diag(λ1,λ2⋯,λz), and x(1 × n) is the monitored sample.
Proper control limits are defined to determine whether the process is
operated under normal conditions as follows:

T2≤
z m2−1
� �
m m−zð Þ Fz; m−zð Þ;α ð5Þ

and

SPEα≤aχ2
b;α ; a ¼ v

2h
; b ¼ 2h2

v
; ð6Þ

where Fz(m − z), α is F-distribution with z and m − z degrees of
freedom under confidence limit α; h and v are the estimated mean
and variance of the squared prediction error from the modeling data,
respectively.

2.2. MPCA [9]

The dataset of a batch process is a three-way array, i.e.,X
:::

I � J � Kð Þ,
where I represents the number of batches, J denotes the number ofmea-
surement variables, and K is the number of sampling instants within
each batch. Combination of batch-wise and variable-wise unfolding is

Fig. 1. Batch-wise unfolding.
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