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Industrial manufacturing processes can be very complex systems where in the manufacture of a single batch
hundreds of processing variables and rawmaterials ismonitored. In these processes, where there is a high degree
of multicollinearity between predictor variables, identifying the candidate variables responsible for any changes
in product quality can prove to be extremely challenging. Within this context partial least squares (PLS), in con-
junction with the variable importance in the projection (PLS-VIP) metric, is currently an important tool in deter-
mining the most correlated variables and helping to determine the root cause for changes in a product's quality
attributes. Using the standard ‘greater than one’ important variable cut-off rule for the PLS-VIP, our approach is to
measure the performance of seven methods of uncertainty estimation with the goal of assessing which method
performs best in reducing the false positive rate while at the same time not impacting the true positive rate. Our
findings demonstrate that the implementation of either thenormal or basic bootstrap confidence intervals for the
PLS-VIP will result in a more consistent determination of the important variables. If computation speed is a con-
cern, the use of the bias-corrected jackknife confidence interval is recommended in place of the un-corrected
jackknife.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Partial least squares (PLS) has gained popularity within the
manufacturing industry for its ability to relate a large number of corre-
lated explanatory variables to a response via a multivariate linear
model, thus proving helpful in driving at the variables most correlated
to product quality changes. A standard PLS analysis provides model fit
statistics, parameter estimates, and in many cases the variable impor-
tance in the projection (PLS-VIP) statistics. It is this latter metric, the
PLS-VIP, which has been found useful in identifying variables associated
with the current manufacturing process performance [1,2]. However,
often times complex predictor space conditions coalesce to produce a
model in which many explanatory variables are deemed important, as
per the PLS-VIP N1 cut-off guideline [2], thus making a practical inter-
pretation of the PLS-VIP, as related to changes in product quality, very
challenging. In spite of this limitation [5] determined that a parameter
uncertainty approach using the lower-bound of the 95% jackknife confi-
dence interval being greater than the PLS-VIP cut-off value of 1 does

indeed provide a reasonable estimate of the most important variables
in a model. Given this conclusion the question arises as to whether the
jackknife estimate of uncertainty is comparable to a general bootstrap
confidence interval approach given that the jackknife is a linear approx-
imation to the bootstrap [3], that can in some instances under-estimate
the variability around an estimate [4]. As such, the goal of this study is to
compare the coverage properties of the jackknife confidence interval,
and its bias-corrected analogue, to five different methods of estimating
confidence intervals via the bootstrap, and how this relates to important
variable selection via the PLS-VIP.

The motivation for assessing five bootstrap procedures is due to
their varying approaches for determining confidence intervals. Hence,
their inclusion in this study allows for a level of competition between
the bootstrap confidence interval methods presented, and allows us to
examine if one general approach is applicable for the PLS-VIP when
compared to the jackknife. The general conclusion may be applicable
for othermodel parameters too. The results fromour studydemonstrate
that implementation of either the normal or basic bootstrap confidence
intervals for the PLS-VIP will result in a more consistent determination
of the important variables currently driving a manufacturing process.
If computation speed is a concern, the use of the bias-corrected jack-
knife confidence interval is recommended in place of the un-corrected
jackknife.
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2. Materials and methods

2.1. Partial least squares

In this paper we only consider the case of a single response variable,
y. As such, the PLS regression model with h latent variables can be
expressed as per Eqs. (1) and (2) [2].

X ¼ TP0 þ E ð1Þ

y ¼ Tcþ f ð2Þ

where X(n× p) is thematrix of predictors, T(n× h) is the X-scorematrix
of latent variables, P(p × h) is the matrix of X-loadings, y(n × 1) is the
univariate response variable, c(h × 1) are the PLS regression coeffi-
cients, and where E(n × p) and f(n × 1) are the residuals of X and y,
respectively.

The goal of PLS is to maximize the covariance between T and y [6].
This maximization is achieved as per Eqs. (3)–(8), as per the NIPALS
algorithm where tk, pk, and wk, stand for the k-th column of T, P, and
W, respectively (k = 1, 2, …, h).

wk ¼ X0
ðkÞyðkÞ= X0

kð Þy kð Þ
��� ��� ð3Þ

tk ¼ X kð Þwk ð4Þ

ĉk ¼ t0ky kð Þ=t
0
ktk ð5Þ

pk ¼ X0
kð Þtk=t

0
ktk ð6Þ

X kþ1ð Þ ¼ X kð Þ−tkp
0
k ð7Þ

y kþ1ð Þ ¼ y kð Þ−tkĉk ð8Þ

The algorithm is then repeated beginning with step 1 using X(k + 1)

and y(k + 1) until the required number of latent variables, h, is obtained.
This step is determined by the data analyst and is often supported by the
use of cross-validation.

2.2. PLS-VIP

The variable importance in the projection (PLS-VIP) [2], scores the
importance of the jth predictor variable per Eq. (9) where p in this
instance is equal to the number of predictor variables.

VIP j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
Xh

k¼1
ĉ2k t

0
ktk

� �
w kjð Þ
� �2

=∑h
k¼1ĉ

2
k t

0
ktk

r
ð9Þ

The PLS-VIP measures the contribution of each predictor variable to
the model by taking into account the covariance between X(k) and y(k),
as expressed by (wjk)2, weighted by the proportion of y(k) that is

explained by the kth dimension ĉ2k t
0
ktk

� �
. The average of the squared

PLS-VIP scores is equal to one; hence the “PLS-VIP score N1” rule is
generally used as the criterion for important variable selection, wherein
simply themagnitude of the PLS-VIP score for a variable needs to exceed
this value. Throughout this paper “PLS-VIP N 1”will be used to designate
this important variable selection criterion.

Wewould like to note that in the classical use of the VIP a decision as
to the ranking of the variables could be made solely on the point

estimate of the VIP. As an example, one could choose the top 3 impor-
tant variables with VIP scores greater than the cut-off criterion of 1 sim-
ply based on their descending VIP magnitude. However, this assumes
that the VIP score is perfectly estimated given the data. When taking
in account the degree of uncertainty in the estimation of the VIP it
might be shown that its score is not significantly different than the
cut-off criterion of 1. In this instance, the variable should not be counted
as an important variable because its score, from a statistical standpoint,
could be b1when taking into account their uncertainty. Hence themost
elevated VIP could possibly be discarded because of its wide confidence
intervals. Furthermore, their ranking can also be changed accordingly.
Our contention is that this estimate of uncertainty can froma theoretical
stand-point be correctly estimated via the bootstrap, and its application
can help in reducing the Type I error rate (false positives). The rationale
of using two-sided intervals as opposed to a one sided lower-bound is to
allow the data analyst the ability to compare the degree uncertainty
estimation between variables. This comparison can inform the data an-
alyst as to which parameters are best estimated given the data. As such,
rather than using the point estimate for the VIP of each variable, VIPj, as
described above, we will now explore methods to estimate the confi-
dence intervals around this estimate for the purpose of objectively
determining a variable's importance and ranking. The scientific notation
used for the confidence interval methods is as follows:

Notation for confidence interval methods
θ population parameter
θ̂ sample estimate of θ
σ̂ sample estimate of the population parameter σ
θ̂ ið Þ jackknife replicate estimate of θ̂ with the ith observation

removed
θ̂ •ð Þ jackknife estimate of θ̂ across all jackknife replicates
σ̂ J jackknife estimate of σ̂

B̂
�
J jackknife estimate of bias

θ̂
�b

bootstrap replicate sample estimate of θ̂
θ̂
�•

bootstrap estimate of θ̂ across all bootstrap replicates
σ̂B bootstrap estimate of σ̂
B̂
�

bootstrap estimate of bias
α statistical significance level

2.3. Jackknife procedure

The jackknife procedure, popular in chemometric applications,
works by repeatedly re-computing the statistic of interest, θ̂ ið Þ , by
leaving out the ith observation from the dataset. It then calculates the
overall jackknife estimate of the parameter, θ̂ •ð Þ, by taking the average
of the aforementioned replicate estimates (Eq. (10)). An estimate for
the standard deviation of said statistic, σ̂ J , can then be calculated
using both θ̂ •ð Þ and the replicates from the re-computations, θ̂ ið Þ
(Eq. (11)) [7].

θ̂ •ð Þ ¼ 1=nð Þ
Xn
i¼1

θ̂ ið Þ ð10Þ

σ̂ J ¼ n−1ð Þ=nð Þ∑n
i¼1 θ̂ ið Þ−θ̂ •ð Þ
� �2� �1=2

ð11Þ

Using the above estimate for σ̂ J , 95% confidence intervals can be
calculated using the appropriate quantiles from the t-distribution (12).

θα ; θ1−αð Þ ¼ θ̂� t 1−α=2;n−1ð Þσ̂ J ð12Þ

An additional property of the jackknife procedure is that it allows for
the estimation of bias between the current estimate and the target
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