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The optimization of a normal weight concrete mixture proportions for determination of the desired concrete
quality is an important issue for concrete manufacturers and users. In this study, the constrained quadratic
programming methodology is based on meta-models developed by using response surface methodology for
determining optimal normal weight concrete mixture proportions. We developed a graphical user interface to
take the burden of numerous experiments and complexmathematical calculations away from laboratory experts
andmanufacturers. However, we developed a graphical user interface based onMATLAB® toolbox which allows
performing optimization of normal weight concrete mixture proportions interactively. The GUI was tested
through real case studies and satisfactorily results were obtained. The results showed that developed graphical
user interface was functional, effective and flexible in solving the optimization problems of normal weight
concrete mixture proportions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Such expression programming applications as artificial neural
networks and fuzzy logic, genetic algorithm and gene expression pro-
gramming arewidely used in literature, in order to estimate the optimal
factor levels in concrete quality. For instance, Topcu and Sarıdemir [27]
carried out a study to estimate rubberized concrete properties using ar-
tificial neural network and fuzzy logic. Özcan et al. [19] compared the
artificial neural network and fuzzy logic models for prediction of long-
term compressive strength of silica fume concrete. Tanyıldızı [25] pro-
posed a fuzzy logic model for the prediction of bond strength of high-
strength lightweight concrete. Baykaşoğlu et al. [4] estimated and opti-
mized high strength concrete parameters via soft computing ap-
proaches such as gene expression programming and neural network.
Yeh and Lien [35] proposed a novel knowledge method to estimate
compressive strength of high performance concrete using genetic algo-
rithm. Erdem [11] analyzed mechanical behavior of concrete at high
temperatures through neural network. Tsai [28] introduced a weighted
operation structures to program strengthener of concrete-typed speci-
mens using genetic algorithm. Demir et al. [9] modeled some properties
of the crushed tile concretes exposed to elevated temperatures through

neural network. Atıcı [1] predicted the strength of mineral admixture
concrete using multivariable regression analysis and an artificial neural
network. Sarıdemir [22] modeled empirically the splitting tensile
strength from cylinder compressive strength of concrete by genetic pro-
gramming. Özgan [20] modeled the Marshall Stability of asphalt con-
crete using neural network. Güler et al. [12] modeled stress–strain of
high strength concrete by fuzzy logic approach. Bal and Bodin [2] esti-
mated drying shrinkage of concrete.

The RMC's (Ready Mixed Concrete Plant) mixture proportion opti-
mization process is time consuming and difficult task for the decision
makers. In Turkey, during the last six years, C30/37 concrete class or
higher durability concrete production rate (see Tables A1–A2) increased
from 17.77% to 38.40% [29]; [33]. In the ready mixed concrete mixture
optimization process, decision makers or laboratory technicians need
expert systems which accelerate the concrete production process and
make laboratory technicians' work easier due to increase in concrete
production. Although there are a vast amount of studies to predict opti-
mal mixture parameters of concrete using expert systems such as fuzzy
logic, neural network, genetic algorithm and genetic programming,
there is still a need for an easy-to-use, flexible, modifiable and user-
friendly tools such as graphical user interface (GUI) that help the deci-
sion makers to identify optimal mixture proportions of RMCs.

The proposed methodology in this paper aims to fill this gap in RMC
mixture optimization process. This paper proposes such an experimental
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design based graphical user interface for determining optimal
mixture proportions of normalweight concrete (NWC). Themain contri-
bution of this study demonstrates the development of easy to use GUI in
order to determine optimal mixture proportion of NWCs. The developed
GUI allows laboratory technicians to analyze relationship between the
required responses and required factors by three-dimensional plots.
Other contribution of this article shows the application of RSM based
quadratic programming (QP) in order to optimize NWCs' properties.
The developed GUI is quite flexible in terms of assigning different
weights to quality criteria and selecting properties of concrete type.
The developed methodology not only relieves the user from numerous
calculations but also provides excellent graphical user interfaces (GUIs)
through which the user can enter various input combinations and have
the results calculated.

2. Materials and methodologies

2.1. Materials

The cement used in this research is a “CEM I 42.5 R” and weighs
350 kg. It has a specific gravity of 3.08 and Blaine fineness of
3540 cm2/g. Fly ash was used with a specific gravity of 2.46 and weighs
80 kg [23]. Chemical composition of the binder materials is given in
Table 1 [24].

A novel polycarboxylate ether type super plasticizer (PCE) was used
in concrete mixtures. The physical and chemical properties of PCE are
shown in Table 2. Crushed sand, which has particle size smaller than
4 mm (I), was used as the fine aggregate. Aggregate number (II) with
a size between 4 mm and 11.2 mm and aggregate number (III) with a
size between 11.2 mm and 22.4 mm were used as coarse aggregate in
the concrete mixtures [24]. Table 3 presents the aggregate sieve analy-
sis. The fine and coarse aggregates have specific gravities of
2.65 g/cm3 and 2.70 g/cm3 and mean water absorptions of 1.5% and
0.9%, respectively. Well water was used for the test [23]. The fine aggre-
gate ratiowasfixed at 50% in all experiments. Also,mixture timeof fresh
concrete was fixed at 120 s.

2.2. Response surface methodology

RSM is an experimental design methodology for determining the
optimum factor levels for a multi-level system [7,10]. Although it is
possible to use either a first-order model or a second-order model, in
RSM the second order model is more common due to its flexibility
and ease of estimation of the optimal factor levels in that model [34].
There are practical experimentations indicating that second-order
models are sufficient in solving real word multi-response problems [6].
First-order models are inadequate modeling the complex systems.
Therefore, optimization with the first-order models is not very success-
ful. However, second-order models such as quadratic models are
successful modeling the complex systems including various material
interactions. One of the most useful second-order designs in RSM is

Central Composite Design (CCD) ([6]; Myers, and Montgomery, [36]).
In our study, rotatable experimental design is carried out as CCD
which consists of 20 experiments [2n (23 = 8: factor points) + 2n (2 ∗
3 = 6: axial points) + 6 (center points: six replications)] [7].

In this study a second-order RSMwas obtained by regression analy-
sis for three factors by using MINITAB®. In the regression equation
developed by Box-Hunter, the test factors are coded according to the
following equations (Eq. (1)) [7]:

xi ¼
Xi−Xi0

ΔXi
ð1Þ

where in Eq. (1) xi is the coded value of the ith independent variable, Xi
is the natural value of the ith independent variable, Xi0 is the natural
value of the ith independent variable at the center point, and ΔXi is
the step change value [7].

The three significant independent variables A, B, and C and
the mathematical dependency of the response Y to these variables can
be approximated by second-order polynomial equation as given
below [7]:

Y ¼ β0 þ β1Aþ β2Bþ β3Cþ β11A
2 þ β22B

2 þ β33C
2 þ β12AB

þ β13ACþ β23BC ð2Þ

where Y is the predicted response, β0 is the constant, β1, β2, and β3 are
the linear coefficients, β12, β13, and β23 are the cross-product coeffi-
cients, and β11, β22, and β33 are the quadratic coefficients [7].

2.3. Quadratic programming

Quadratic programming is one of the most important optimization
techniques in operations research. It has led to a number of interesting
applications and the development of numerous useful results. The in-
ventory management, engineering design, molecular study, economics,
and portfolio selection are someexamples [15]. Quadratic programming
is a mathematical modeling technique designed to optimize the use
of limited resources. In vector–matrix notation, it may be written as
[15]:

Min Z ¼ cx þ x0Qx ð3Þ

s:t: Ax≤b;
x≥0; ð4Þ

where x=(xj, j= 1,…, n) is the vector of decision variables to be deter-
mined. The other parameters given by the problem c= (cj, j = 1,…, n)
is vector of cost coefficients,Q= ∥qij∥ is thematrix of the quadratic form
b = (bi, i = 1,…, m) is vector of right-hand sides, and A = ∥aij∥ is the
matrix of constraint coefficients [15]. In our study, Q is symmetric and
semi-definite. The optimal values of the decision variables xj, j = 1,…,
n are functions of the parameters aij, bi and cj, i = 1,…, m, j = 1, …, n.

Table 1
Chemical composition of binder materials [23,24].

Chemicals CEM I 42.5 R (%) Fly ash (%)

CaO 66.25 4.76
SiO2 21.79 56.21
Al2O3 5.98 23.1
Fe2O3 2.51 6.51
SO3 1.54 0.73
MgO 1.15 2.11
K2O 0.61 2.53
Na2O 0.15 0.27
Cl 0.0071 0.0018
Loss of ignition 3.71 2.24

Table 2
Properties of the PCE at 20 °C [23].

Properties Superplasticizers

Chemical description Polycarboxylic type polymer
Color Brown
Specific gravity (kg/L) 1.059–1.099
Chlorin content % (EN 480-10) b0.1
Alkaline content% (EN 480-12) b3
Phase Liquid
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