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Deciphering interactions between protein kinases (PKs) and the target substrates are fundamental for under-
standing the molecular mechanisms of phosphorylation. Although all PKs have been identified in eukaryotes,
the sites that they phosphorylate are only partially elucidated. Experimental identification of phosphorylation
sites is labor and resource intensive, so developing an effective method to computationally predict potential
sites is increasingly important. Here, a novel method was proposed for the identification of kinase-specific phos-
phorylation sites based on domain–domain interactions (DDIs). Using difference analysis between phosphoryla-
tion sites and non-phosphorylation sites, the distinct neighbor residues around the phosphorylation sites were
firstly identified in our study. The results of difference analysis by rank sum test indicate that 19, 26, 26 and 10
neighbor residues are distinctive for the phosphorylation site prediction of four major serine (S)/threonine (T)
protein kinase families—CDK, CK2, PKA and PKC respectively. Then the correlation coefficients were computed
to represent the interaction between PK domains and phosphorylation domains of the substrate proteins. Four
random forest models (RF) were constructed to predict the potential sites, the CDK, CK2, PKA and PKC RFmodels
yield an accuracy of 86.57%, 91.44%, 87.02% and 80.11% on the test sets respectively. Finally, the new substrate
proteins in protein data bank (PDB) were extracted to verify the distinct residues around the phosphorylation
sites at 3D-structural level and the results further demonstrate the reliability of our models, which indicate
that our method will be a useful tool for elucidating dynamic interactions between PKs and their substrates.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Phosphorylation is one of the most important post-translational
modifications by adding a phosphate group (PO4) to serine (S), threo-
nine (T) or tyrosine (Y) in substrate proteins catalyzed by protein ki-
nases (PKs) [1]. It regulates all aspects of biological process, including
cell cycle [2], DNA repair [3], regulation of transcription [4], cellularmo-
tility [5], and so on. It has been proven that in human genome, about 2%
of the genes are responsible for encoding protein kinases, while nearly
50% of them are linked to many diseases, particularly cancer [6].
Proteins that are phosphorylated often undergo biochemical changes
that further affect the relative biological pathways [7]. In eukaryotic
cells, 30%–50% proteins undergo phosphorylation [8]. While most or
all PKs have been identified, the sites they phosphorylate have been
just partially elucidated. Therefore, the identification of phosphoryla-
tion sites, especially kinase-specific phosphorylation sites is essential
for understanding the functions of PKs and the molecular mechanisms
of phosphorylation.

Experimentalmethods have been used for the identification of novel
phosphorylation sites, such as low-throughput biological technique

based on site-directed mutagenesis [9] and high-throughput technique
ofmass spectrometry [10]. However thesemethods are time consuming
and expensive to perform, so it is of great significance to propose
effective computational method to predict the potential sites. Several
computational methods have been proposed to predict the phosphory-
lation sites. Originally, the so-called non-specific tool of NetPhos [11]
was developed, regardless of the organism information. In fact, there
may be different phosphorylation patterns in substrates of different
organisms, so organism-specific methods were proposed including
PhosPhat 3.0 [12], NetPhosBac [13] and NetPhosYeast [14]. Usually,
one PK only selectively phosphorylates some of the substrates by recog-
nizing the sequence or structural profiles around phosphorylation sites
[15], so kinase-specific prediction tools have become increasingly popu-
lar, such as ScanSite [16] and KinasePhos [17,18]. At the same time, web
servers on line to predict kinase-specific phosphorylation sites are avail-
able including GPS [19,20], PredPhospho [21] and PhoScan [22]. Recent-
ly, a known and predicted functional database about post-translational
modifications (PTMs), PTMcode [23] was constructed to provide more
valid data for computational methods.

Since these kinase-specific methods have obtained good perfor-
mance, but they only take the phosphorylation domain information of
substrates into account. It is known that the specific residues at certain
positions are targeted by the catalytic domain of a particular kinase, so
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we can expect that the performance of the phosphorylation site predic-
tion would be further improved if the catalytic domain information is
also considered. Moreover, the neighbor residues have been shown to
be very important for the phosphorylation of one site, but the conversa-
tion varies from site to site and some residues with little conservation
have no contributions to the site identification. So the neighbor residues
that are distinctive for the site prediction need to be identified.

In this paper, we made a first attempt to identify the neighbor
residues that are distinct for phosphorylation site and a new kinase-
specific predictionmethod was proposed based on domain–domain in-
teractions. Usingdifference analysis by rank sum test, out of 50neighbor
residues fromposition−25 to 25, 19, 26, 26 and 10 neighbors proved to
be distinctive for phosphorylation site prediction of CDK, CK2, PKA and
PKC respectively. Through computing correlation coefficients between
the residues in PK domain and the distinct residues in the phosphoryla-
tion domain, the correlation vector was obtained for representing the
DDI information. So the final RF models were constructed for the four
kinase families and the prediction accuracy was higher than 80%. The
promising prediction results on the testing dataset and the independent
dataset demonstrate that our method will be useful in identifying the
novel phosphorylation sites of different kinase families.

2. Material and methods

2.1. Dataset preparation

The most common S/T kinases are found in the four families: CDK,
CK2, PKA and PKC. Kinases in these four families are responsible for
about half of the known S/T kinase reactions taking place in eukaryotic
organisms [24]. The information of other kinase families is limited,
so only the four major kinase families were considered in this paper.
The experimentally verified kinase–substrate interaction data are from
the two public databases, PhosphoPIONT [25] and PhosphoSitePlus
[26]. From PhosphoPOINT, category 4 included 1911 PPIs and 1280
PPIs were extracted from PhosphoSitePlus. After further verifying
them in HPRD (Human Protein Reference Database), there are 556,
258, 264 and 460 PPIs for the four major S/T kinase families of CDK,
CK2, PKA and PKC respectively according to the kinase name index
table in KinBase and Kinomer [27].

Proteins consist of one or multiple domains thought as functional
units of protein and interactions betweenproteins typically involve bind-
ing between specific domains [28]. Therefore, DDIs can be key supporting
evidences for protein interactionmechanisms. In our paper, we used DDI
to represent the interaction between a kinase and its substrate. So a DDI
denotes the interaction between a PK domain and a phosphorylation do-
main. The data of phosphorylation domains of substrates were retrieved
from the phosphoELM version 9.0 [29] and Uniprot release 2013_12.
Since the kinase-specific phosphorylation sites can not be found in
many substrates, there are only 390 sites for CDK, 272 for CK2, 201 for
PKA and 380 for PKC, respectively. In order to investigate the residues
surrounding the phosphorylation sites, the sequence fragments were
extracted by awindow size of 51 centered on S/T. Thewindow size con-
sists of 51 residues placed from position −25 to 25. Fragments with a
phosphorylated S/T on position 0 are deemed as the phosphorylation
domains (positive data) while those centered on non-phosphorylated
S/T are the negative data. The PK domain is a structurally conserved do-
main containing the catalytic function of PKs [30–32]. In Pfam database
[33], the PK domain information for each kinase has been available. So
a positive DDI is composed of a PK domain and the target phosphoryla-
tion domain and a negative DDI includes a PK domain and the non-
phosphorylation domain.

In order to avoid homology bias, the commonly used multiple
sequence alignment tool of CD-HIT program [34] was used to remove
redundancy. Using a low sequence identity threshold of 30%, CD-HIT
program was performed on the phosphorylation domains and
non-phosphorylation domains respectively. So, the four datasets of

DK, CK2, PKA and PKC include 180 positive and 1765 negative DDIs,
121 positive and 1067 negative DDIs, 162 positive and 1927 negative
DDIs, and 169 positive and 1773 negative DDIs, respectively. Consider-
ing the very large amount of negative samples, the size of the negative
set was set to be 1.5 times that of the positive set. The final, balanced
datasets for CDK, CK2, PKA and PKC consist of 180 positive and 270
negative samples, 121 positive and 182 negative samples, 162 positive
and 243 negative samples and 169 positive and 254 negative samples,
respectively.

2.2. Feature extraction

It is important to describe protein sequence quantitatively. PPIs can
be defined as four interaction modes: electrostatic interaction, steric
interaction, hydrophobic interaction and hydrogen bond [35,36]. Ac-
cording to the four interaction modes, four feature groups including
31 electronic properties, 248 steric properties, 110 hydrophobic proper-
ties and 6 hydrogen bond properties were manually selected from 544
natural amino acid properties from AAindex [37]. The original features
are listed in Supplementary Table S1.

First, the original properties were normalized to zeromean and unit
standard deviation (SD) to eliminate the unit difference. Considering
the redundancy of features, the properties that have N90% correlation
identity to one another were removed in each group. As a result, four
original variable matrices were obtained, including 23 electronic prop-
erties, 134 steric properties, 32 hydrophobic properties and 5 hydrogen
bond properties. Then the four variable matrices were processed by
principal component analysis (PCA) respectively. Accounting for ≥90%
variance of the original information, the top 7, 10, 5 and 3 significant
principal components were obtained for electrostatic, steric, hydropho-
bic and hydrogen bond properties, respectively. Multiplying the scoring
coefficient of each principal component by the original features, 25
significant principal component scores were yielded as a new amino
acid descriptor on behalf of the original data and the information loss
was insignificant (b10%).

2.3. Correlation vectors for DDIs

The interaction information of the two interacting proteins is gener-
ally characterized by the relationship between the residues in the two
different domains. So Chou's work [38], we used correlation coefficients
(CCs) to numerically represent the interactions between residues in PK
domains and phosphorylation domains. Given a phosphorylation do-
main with 51 residues and a PK domain with N′ residues, CC variables
can be calculated by the following equation:

CCij ¼

XN 0

k¼1

Pij−P
0
kj

� �2

N
0 1ð Þ

Vcc ¼ CCij

h iT
2ð Þ

)
i∈ −25;25½ �
j∈ 1;25½ �

where Pij represents the value of j-th property for i-th residue in a phos-
phorylation domain and Pkj

' is the value of j-th property for k-th residue
in a PK domain. T denotes thematrix transposition. In thisway, each DDI
was converted into a numerical vector and the dimension is the 51∗25.

2.3. Model construction and evaluation

As a good classification and regression method [39,40], Random
forest (RF) has been successfully used in many fields [e.g. 41–43]. Also
it has proven to perform well on the prediction of kinase–substrate
interactions [44]. So in this paper, we used RF to construct the model
for predicting kinase-specific phosphorylation sites. In this study, the
RF algorithm was implemented by the RF package in R language.
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