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In general, linearity is assumed to hold in multivariate calibration (MVC), but this may not be true. We ap-
proach the MVC problem using multidimensional penalized signal regression, which can be extended with
an explicit link function between linear prediction and response and in the spirit of single-index models.
As the two-dimensional surface of calibration coefficients is smoothly and generally estimated with tensor
product P-splines, the unknown link function is estimated using univariate Psplines. The methods presented
are grounded in penalized regression, where difference penalties are placed on the rows and columns of the
tensor product coefficients, as well as on the link function coefficients, each having its own tuning parameter.
An application to ternary mixture data shows that a non-linearity is present. Performance comparisons are
made to standard penalized signal regression, not only demonstrating the nonlinear effect, but also improve-
ments in external prediction.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we take a novel approach in the multivariate calibra-
tion problem, in particular where the signal (spectra) regressors
have two-dimensional structures. Our application considers UV–VIS
spectra taken over several temperatures. Through simultaneous esti-
mation, we parse out and estimate two separate modeling compo-
nents: (1) a single smooth regression coefficient surface associated
with the two-dimensional signal [12], and (2) an unknown, possibly
nonlinear, link function [3]. Although the first component is linear,
the second component explicitly models the nonlinearity, allowing
us to learn something about its features, while enhancing insight
into the measurement process. We will see that the combination of
these components can lead to a systematic and tractable modeling
approach, that is statistical in nature, while having improved external
prediction performance when compared to standard signal regression
approaches and partial least squares.

1.1. Multivariate calibration with two-dimensional signals

At the heart of a multivariate calibration problem is rich regressor
data, often compactly given as a digitized signal, curve, or spectra.
Such regressor information can also be in two or more dimensions,
of such digitized images. An often ironic consequence of such data is

that as more and more precisely regressor information are obtained,
the more and more ill-conditioned estimation becomes. Since classi-
cal least squares modeling approaches usually fail, there have been
numerous competing methods developed to provide tractable and re-
liable prediction; see Eilers et al. [3] and Eriksson et al. [7] for partial
lists. We will see that, unlike most of the other approaches, our pro-
posed method additionally takes advantage of the ordered or array
structure among the regressors.

To motivate the problem, Fig. 1 displays signal regressors (at two
different temperatures) for each of m=34 observations, coming
from a ternary mixture experiment using spectroscopy. Each “signal”
actually consists of numerous digitizations (p=401) along the wave-
length axis (700 to 1100, by 1 nm). The top (bottom) panels present
the raw (first differenced) spectra. If such optical regressors are to be
related, e.g. to a chemometric response, then some regularization is
needed. Generally, not only is p≫m, but the regressors are highly
correlated.

Notice that the left and right panels of Fig. 1 presents “signals” at
temperature levels of 30° and 70 °C, respectively, and one could ima-
gine even more, forming a sequence of several “extremely narrow im-
ages”. Thus a natural question to ask is: What if the signal regressors
become fully two-dimensional, and we wish to take into account spa-
tial information in both directions? One could view this problem as
multivariate calibration with multidimensional spectra, where, e.g.,
the second dimension is temperature. Fig. 2 presents such a two-di-
mensional spectra structure with 4800 regressors, summarized in a
12×400 matrix (using first differences), for the center mixture unit,
with corresponding scalar responses (water, 1,2-ethanediol, 3-
amino-1-propanol, each at 0.33).
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1.2. Notation and data structure

The data structure is as follows, each observation consists of the
data pair: (yi,Xi), where i=1,…,m. The response yi is scalar. We as-
sume independence among the responses, with common variance
var(y)=σ2.

The two-dimensional signal consists of (often thousands of) digi-
tized regressors, Xi, arranged in a p×⌣p array. The indexing axes, i.e. v
and⌣v, that define the support coordinates of Xi are usually on a regu-
lar grid, but the only requirement for our method is that the scatter of
digitizations are common for all i. As suggested by Fig. 2, the number

of regressors are rich, over one hundred times greater in number than
observations. The regressor support is specified as v⋆ (wavelength)
with p=400 channels (701 to 1100 nm, by 1 nm) and ⌣v⋆ with ⌣p ¼
12 temperature channels (30, 35, 37.5, 40, 45, 47.5, 50, 55, 60, 62.5,
65, 70 °C).

The response y comes from the composition (mole fraction) of a
mixture, here consisting of three components (water, 1,2-ethanediol,
3-amino-1-propanol). The ternary plot for the m=34 mixtures is
provided in Fig. 3. The center data point in the triangle represents
equal concentrations of the three components, the edge points are
mixtures containing only two components, and the corners are
pure. Note that there are 3 pure, 12 edge, and 19 interior (1 center)
mixtures.

1.3. First modeling component: MPSR

The multidimensional signal regression (MPSR) model was first
presented in Marx and Eilers [12], initially motivated by both Marx
and Eilers [10] and Eilers and Marx [6]. The model's goal is to provide
an extremely practical solution for functional linear models using the
entire two-dimensional signal as regressors. Associated with the re-
gressors is a single overarching coefficient surface which serves to
smoothly weigh each two-dimensional signal digitization over its
support. Regularization is needed, and we choose to impose some
sensible constraints: ones that take into account the spatial structure
of the regressors, while ensuring smoothness in the coefficient sur-
face. As with any P-spline approach [4], we take two steps toward
smoothness: (a) The coefficient surface (not the signal) is intention-
ally overfit using two-dimensional tensor product B-splines, making
the surface more flexible than needed. (b) Tensor product coefficient
estimates are penalized using difference penalties on each of the rows
and columns.

The first step provides an initial reduction in parameter estimation
through smoothness, as the higher dimensional two-dimensional sig-
nal coefficient surface is projected onto a lower dimensional tensor
product basis, where the knots are “richly” chosen on a regular grid,
thus circumventing knot selection schemes. The second step ensures
further smoothness, as well as regularization, while allowing general
surface candidates. Two tuning parameters, associated with the row
and column penalties, respectively, are needed to allow for continu-
ous control over the surface. Fig. 4 displays a variety examples of (co-
efficient) surfaces using tensor products B-splines. The upper, left
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Fig. 1. Signal regressors (raw and first differenced) for mixture experiment, at two dif-
ferent temperatures.
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Fig. 2. Two-dimensional (first differenced) signal regressor image for center mixture.
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Fig. 3. Ternary plot for mixtures, with m=34: 3 pure, 12 edge, 19 interior.
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