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Data processing and analysis have become true rate and success limiting factors for molecular research where
a large number of samples of high complexity are included in the data set. In general rather complicated
methodologies are needed for the combination and comparison of information as obtained from selected
analytical platforms. Although commercial as well as freely accessible software for high-throughput data
processing are available for most platforms, tailored in-house solutions for data management and analysis can
provide the versatility and transparency eligible for e.g. method development and pilot studies.
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Urine profile This paper describes a procedure for exploring metabolic fingerprints in urine samples from prostate and
LC MS bladder cancer patients with a set of in-house developed Matlab tools. In spite of the immense amount of data

produced by the LC-MS platform, in this study more than 10'° data points, it is shown that the data processing
tasks can be handled with reasonable computer resources. The preprocessing steps include baseline
subtraction and noise reduction, followed by an initial time alignment. In the data analysis the fingerprints are
treated as 2-D images, i.e. pixel by pixel, in contrast to the more common list-based approach after peak or
feature detection. Although the latter approach greatly reduces the data complexity, it also involves a critical
step that may obscure essential information due to undetected or misaligned peaks. The effects of remaining
time shifts after the initial alignment are reduced by a binning and ‘blurring’ procedure prior to the
comparative multivariate and univariate data analyses. Other factors than cancer assignment were taken into
account by ANOVA applied to the PCA scores as well as to the individual variables (pixels). It was found that
the analytical day-to-day variations in our study had a large confounding effect on the cancer related
differences, which emphasizes the role of proper normalization and/or experimental design. While PCA could
not establish significant cancer related patterns, the pixel-wise univariate analysis could provide a list of about
a hundred ‘hotspots’ indicating possible biomarkers. This was also the limited goal for this study, with focus
on the exploration of a really huge and complex data set. True biomarker identification, however, needs
thorough validation and verification in separate patient sets.

Metabolic fingerprinting

© 2011 Elsevier B.V. All rights reserved.

1. Introduction techniques for metabolite analysis have been reviewed for LC-MS

[3,4], GC-MS [5] and CE-MS [6-8]. As a non-targeted approach,

1.1. General

Metabolic fingerprinting is a strategy for investigating systematic
changes in the metabolome of a living organism due to diseases or
external influences, such as exposure to pharmacologically active
substances. Neither quantitation nor a priori knowledge of the
measured compounds is needed. Metabolic fingerprinting is therefore
a promising strategy for finding new potential biomarkers of various
diseases [1].

Mass spectrometry has emerged as one of the major analytical
platforms in metabolomics, either with direct infusion or coupled to a
separation technique [2]. The development and use of hyphenated
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metabolic fingerprinting implies that as much as possible of the
metabolome should be covered by the analytical procedure. In
separation-based MS the fingerprint for each sample is obtained as
a series of consecutive mass spectra, and the number of data points
may reach the order of 108 or even higher. It is not unusual that the
task to handle and explore the vast amount of data is the bottleneck in
a metabolic study. To enable high-throughput properties of metabol-
ic/proteomic assays efficient software have been developed, both
commercially and freely accessible (a list of free software for
processing MS data is available at http://www.ms-utils.org). Several
reviews of computational methods and available software for
processing separation-based MS data in metabolomics/proteomics
have been published [9-13].

Our group has previously developed Matlab tools for exploration
of two-way fingerprints of complex samples obtained from CE/LC/GC
separation with MS detection [14-17]. These tools are mainly
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intended for use in method development, pilot studies or initial data
exploration. Much effort has been spent to enable visually guided and
interactively controlled procedures in the data evaluation, with less
focus on optimized high-throughput data processing.

1.2. Related work

The data processing workflow for non-targeted metabolic/prote-
omic studies involves data preprocessing followed by data analysis.
Usually the preprocessing phase results in lists of peaks or features
corresponding to separate, although unknown, chemical substances
in the samples. The lists may then be subject to data analysis by
standard programs for univariate or multivariate statistics. Preproces-
sing packages perform a series of preprocessing steps including raw
data extraction, m/z binning into m/z channels, noise removal and
baseline subtraction, peak or feature detection, and alignment of
peaks or features between samples.

1.2.1. m/z binning

The data for each run (sample) is usually arranged in a 2-D data
array, with time as one dimension and m/z as the other. While there is
a natural grid for the time dimension (i.e. the scan number), the
distribution of the m/z values depends on the MS technique utilized.
With signal acquisition at a constant speed, the difference between
two adjacent m/z values is proportional to (m/z)'/? for a time-of-flight
instrument and to (m/z)? for a Fourier transform based instrument
(FT-ICR or Orbitrap). The m/z values actually reported by the MS
instrumentation software will also depend on the built-in calibration
procedure; in some cases frequent recalibration even during a run
distorts the intrinsic discrete m/z distribution. The same holds true if
data points below an intensity threshold are discarded or if only
centroided peak values are reported. With most preprocessing
packages, as with XCMS [18] and MZmine [19], m/z binning is made
in equally sized steps. The subsequent processing (noise reduction,
background subtraction, and peak detection) is then performed on the
separate chromatograms for each m/z channel (rows or columns in
the data matrix). However, the width of the mass spectral peaks, as
well as the intrinsic m/z distribution, will vary over the m/z range.
With a constant m/z bin size it is therefore difficult to avoid
overlapping chromatographic peaks (too large bins) or splitting
chromatographic peaks over several m/z channels, even with empty
gaps between them (too small bins). The bin size will also affect the
noise and background conditions; with large bins the m/z channels
include more noise and with small bins the elevated background
signal may shift between m/z channels during the run. These
circumstances have led to development of peak/feature detection
methods without regular m/z binning, mostly utilizing centroided m/z
values [20-24].

1.2.2. Noise and baseline, peak list vs. 2-D image

Noise filtering and baseline removal may take place prior to peak/
feature detection or be included in the latter procedure. In both cases
the outcome of the peak/feature detection depends on the parameters
selected for the processing steps. It has been demonstrated that even
with optimized parameters the number of detected features for the
same dataset depends on the software utilized [22,24]. To circumvent
the inherent problems with peak/feature detection, the 2-D data
matrix could be retained as an image characterizing the sample
without reduction to peaks or features. Further data analysis,
involving comparison between samples, is then performed on a
datapoint-by-datapoint basis, or ‘pixel-wise’ with the pixels defined
by the binning in time and m/z dimensions. This image-based
approach has been taken by several groups [25-30]. It was also the
basis for our Matlab tools, using a constant m/z bin size that is
comparable with the average peak width over the m/z range (in the
present study Am/z 0.1). For each m/z channel the baseline is found by

iterative asymmetric least-squares estimation [31,32] of a spline
function and then subtracted. All data points below a noise level
derived from the variations around the fitted baseline are then
discarded as noise. Noise reduction and baseline removal applied to
the individual runs will considerably reduce the amount of data and
also facilitate further data analysis.

1.2.3. Alignment

Image-based as well as peak or feature-based comparison between
data from different runs or samples requires alignment with respect
to retention times as well as m/z, and the large amount of work in this
area has been extensively reviewed [33-36]. Especially the inevitable
shifts in retention times between runs have been considered, usually
with a non-linear time warping function for each run as a remedy.
However, such a global alignment (i.e. common for all m/z channels)
cannot handle local shifts; even reversed order of peaks have been
reported [35,37] and also found in our study.

With our approach the comparative analysis is performed in a way
that is fairly tolerant to shifts in time and m/z (to be described below
in Statistical analysis). The influence of time shifts could be reduced by
time binning, although bins that are large enough to account for
possible time shifts would probably result in merging peaks of
different origin. Therefore an initial alignment is performed of all runs
vs. a master run, with visually guided selection of time points with
high spectral correlation as knot points of a piecewise linear warping
function. Prior to data analysis the data may be subject to further time
binning. Choosing the bin sizes to be comparable with the peak widths
in time and m/z, respectively, will reduce the amount of data with
little loss of information. However, the risk of peak splitting between
adjacent bins must be considered during the following analysis. The
remaining time shifts could also correspond to several time bins.

1.2.4. Normalization, scaling, transformation

Three related issues when comparing pairs or groups of individual
2-D fingerprints are normalization, scaling and transformation of the
data. These are all dealing with the quantitative measure obtained for
each pixel, i.e. the summed intensities for all data points within each
combination of time and m/z bins. A common strategy for normal-
ization is to apply a single scale factor for all intensities in a run, while
more elaborate normalization schemes also have been described [38].
Especially in urine samples the metabolite concentration may show
strong fluctuations, and possible normalization strategies based on
specific urine sample properties have been discussed [39]. A simple
but more general approach is to normalize the intensities within a run
to unit sum, which could at least partly compensate for variations in
experimental factors in sample preparation and sample analysis. This
is also the normalization method utilized in our tools.

The impact of scaling and transformation of metabolomics data
was discussed by van den Berg et al. [40]. Common scaling methods
may be appropriate for integrated peak or feature representation,
while with image-based data also pixels with very low intensities are
retained. For such positions autoscaling and similar methods could
easily inflate even small random variations. The intention to reduce
the predominant influence of high-intensity pixel positions can be
fulfilled by operations like log transformation (log x) or power
transformation (x'/¥). In this work we do without scaling but apply
square-rooting (k=2) as a compromise between original data and log
transformed data. Square-rooting implies a level-independent change
in relative differences while absolute differences change as the
square-root of the level. Thus, with square-rooting the relative
differences are enhanced in comparison with absolute differences,
but not as much as with log transformation. Another feature with log
transformation is that multiplicative effects turn into additive effects,
which sometimes is favorable in ANOVA modeling of influential
factors. In reality the factors may exert additive as well as
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