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Configuration of a radial basis function network (RBFN) comprises identifying the network parameters (inputs,
centers as well as widths in RBF units, and weights between the hidden and output layers) and architecture. The
issues of overfitting and local optima often happened during RBFN training. To rectify this situation, regression
tree (RT), allied with hybrid particle swarm optimization (PSO) algorithm, was invoked to configure an RBFN to
form the HPSORTRBFN algorithm in the present study. Discrete PSO was invoked to obtain an RT of the right
size. The regions in the instance space defined by the leaf nodes of the grownRTwere transformed into the centers
in RBF units and the number of leaf nodes acted as the network structure. The splitting variables in RT became the
inputs in RBFN. Thewidths andweights in RBFNwere simultaneously optimized by continuous PSO. HPSORTRBFN
was applied to predict the anti-HIV activities of 1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT)
analogues and the bioactivities offlavonoid derivatives. The results showedRT alliedwithHPSO is able to configure
a globally optimal RBFN and HPSORTRBFN owns superior modeling performance to RBFN and RT.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Radial basis function network as an important non-parameter
modeling tool has been proven fruitful in quantitative structure–
activity relationship (QSAR) studies. It may be due to the fact that
RBFN holds great potential in approximating various nonlinear rela-
tionships between the descriptors and bioactivities within sufficient
accuracy [1]. This is also the right advantage of RBFN over other
methods, e.g., partial least-squares (PLS) regression.

The design of a successful RBFN involves several nontrivial issues,
such as the network architecture and parameters (inputs, centers and
widths in RBF units, and weights between the hidden and output
layers) [2]. Typically, RBFN is configured by first identifying the cen-
ters and widths via clustering method (i.e., K-means) under a fixed
network topology [3,4] and then obtaining the weights by a regulari-
zation method or descent algorithm [5]. Though the clustering meth-
od is able to allocate efficaciously the training instances into clusters,
it only takes the inputs into consideration and pays no attention to
the outputs. Imaginably, the followed network weight calculation
by regularization method may yield underfitting and suboptima. The
descent algorithm offers the possibility of improving the centers and
widths, however, suffering from somewell-knowndrawbacks, e.g., pre-
mature convergence to suboptima and inclination to overfitting. The

RBFN topology, i.e., the hidden node number, is generally pre-defined.
As a matter of fact, it is one of the most crucial factors for RBFN to effec-
tively solve problems. Oversimplified network might hamper the net-
work convergence, while excessive hidden nodes would be prone to
overfit the data, hence offering poor generalization. This is a manifesta-
tion of the ubiquitous issue of model complexity encountered by all
non-parameter methods. Several tools are used for the network struc-
ture identification by gradually adding or deleting the hidden nodes
[6–8]. However, the performance of such methods depends strongly
on the concrete operation of the network because the architecture is
not fixed preliminarily but evolved during regulating thewhole system.
In addition, RBFN must be coupled with another feature selection tool
for identifying the inputs, otherwise yielding deteriorated performance
and prohibitively large computation.

Owing to the great appeal of RBFN, many efforts were made to
meliorate RBFN. For example, optimization techniques, such as, parti-
cle swarm optimization (PSO) [9] and genetic algorithm [10], were
attempted for inducing the globally optimal RBFNs. Although the gen-
eralization ability of RBFN is indeed enhanced to a great extent, such
optimization tools confine the centers initialized in the first genera-
tion to the random subset of the training set or the randomness with-
out any apriority on the instances. Such limited feasible regions for
centers may not provide a sufficiently flexible model to guarantee ac-
ceptable performance. Little attention was paid on inputs which were
usually pre-specified before configuring RBFN. In addition, regression
tree (RT) was explored by Orr [11] to initialize RBFN. In Orr's study
[11], subset of the leaf nodes in an unpruned RT contributed all RBF
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units. The splitting variables in RT acted as the inputs in RBFN so as to
improve the computational effectivity. Subsequently, traditional reg-
ularization method (i.e., pesudoinverse matrix) was used to calculate
the weights between the hidden and output layers. This may be due
to the tree-induction process decomposing the instance space gradu-
ally into relatively pure disjoint regions and the natural feature of RT
in automatically deciding the relevant variables. The initialization of
RBFN by RT shows good theoretical and experimental performance
[11]. However, the subset of leaf nodes in RT by forward selection
method is computationally expensive with less intuitiveness, since
the selection is processed by checking each node in RT from root to
leaves [11]. Only part of leaves is ultimately involved for contributing
RBF units, thus some regions will be missed, resulting in an increased
risk of RBFN being trapped into suboptima. Moreover, RBFN gets into
local optima with a higher frequency, since the tree induction and
RBFN configuration are two sequential and completely independent
processes. Consequently, designing a successful RBFN involves several
nontrivial issues, and so far there does not seem to exist any simple
and general algorithm or heuristic addressing them all at the same
time.

Inspired by the attractive characteristic of RT in initializing RBFN, the
appealing property of PSO in parameter optimization, and the require-
ments of RBFN induction, RT allied with hybrid PSO was invoked to
configure an RBFN (HPSORTRBFN) via simultaneously identifying the pa-
rameters and topology in RBFN in the current study. In HPSORTRBFN, the
appropriately-fit tree was obtained by discrete PSO, with the splitting
variables serving as the inputs of RBFN and each leaf node deciding one
center in RBFN. The remainder parameters in RBFN, i.e., the widths and
weights, were optimized by continuous PSO. Two QSAR data sets were
used to support the viewpoint that RT allied with hybrid PSO serves as
the efficacious way to improve the generalization ability of RBFN.

2. Theory

2.1. Radial basis function network (RBFN)

RBFN consists of three layers: input, hidden, and output layers.
The input layer merely acts as the input distributor to the hidden
layer. Each hidden node takes a basis function as nonlinear transfer
to operate on the inputs. The output layer is operated by a linear com-
bination of RBF units according to the following expression:

yk xð Þ ¼
XJ

j

wkjϕj xð Þ þwk ð1Þ

where yk is the kth output unit for the input vector x, J is the number
of RBF units,wkj is the weight between the kth output and the jth hid-
den nodes, ϕj is the notation for the output of the jth RBF unit and wk

is the bias. The most commonly used RBF is the Gaussian function
characterized by a center cj and a width σj as follows:
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From the above-mentioned delineation, one can obtain that the core
of RBFN configuration comprises the identification of the network pa-
rameters (inputs, centers, widths, and weights) and architecture. In
this paper, RT incorporated with hybrid PSO was implemented for
adaptively configuring RBFN by simultaneously seeking for the optimal
network parameters and architecture.

2.2. Regression tree (RT)

RT is originated from classification and regression trees (CART) by
Breiman et al. [12]. Here only a concise description of RT is presented.

Generally, the configuration of RT consists of three basic steps.
Firstly, the largest tree is grown by applying greedy recursive
partitioning. Recursive partitioning is conducted in top-down fashion,
starting from the root node containing the entire training compounds
until each node reaches complete homogeneity or minimal sample
number (i.e., node size) and becomes a terminal or leaf node. In es-
sence, the tree-induction process, i.e., recursive partitioning, de-
composes the instance space gradually into relatively pure disjoint
regions. The partition proceeds via selecting a certain descriptor and
its certain value, respectively, as the splitting variable and value on
a goodness-of-split criterion [12]. Typically, the descriptors carrying
most information about the endpoint tend to be split earliest and
most often. This is some kind of automatic relevance determination
of variables which is a natural feature of RT. Secondly, on the minimal
cost-complexity pruning (MCCP) criterion [12], the largest tree is
pruned to yield a sequence of nested subtrees. Ultimately, from
such nested subtrees, the final appropriately-fit RT is selected [12].
In the current study, RT was used to identify the inputs, centers, and
architecture corresponding to RBFN. Since the size of RT does not
predicate the complexity of RBFN, it is not necessary to perform the
pruning step that is normally associated with recursive splitting
methods. Therefore, the minimal node size (i.e., pmin), is the only
tunable parameter to decide when to stop growing RT. Here, pmin is
optimized by discrete PSO.

2.3. Particle swarm optimization (PSO)

The particle swarm optimization method, originally developed by
Eberhart and Kennedy [13–16], is a stochastic global optimization
method simulating the social behavior of bird flock. It explores the
problem space by a population of particles, each standing for a single
solution. In PSO, each particle flies over the problem space with a ve-
locity guiding the flying of the particle, keeping track of the best solu-
tion encountered so far. PSO can operate in continuous and discrete
spaces, being indicated fast convergence to the optima [9,17–20].
The detailed description of PSO can be found elsewhere [9]. Here
PSO is briefly described.

For continuous PSO, position and velocity of each particle is first
initialized by dispersing them uniformly across the search space ran-
domly. The ith particle and its corresponding velocity, i.e. the rate of
the position change for the ith particle, are represented as Pari=
(Pari1, Pari2, …, PariD) and vi=(vi1,vi2, …, viD), respectively. In every
cycle, updating each particle is realized by following the personal
best position and the global best position. The former refers to the
best previous position of the ith particle yielding the best fitness
value, represented as pi=(pi1, pi2, …, piD), while the latter is the
best particle among all the particles in the population, represented
as pg=(pg1, pg2, …, pgD). Once the above-mentioned two best values
have been found, the particle updates its velocity and position in
terms of the following two equations:

vid newð Þ ¼ vid oldð Þ þ c1 � r1 � pid−Paridð Þ þ c2 � r2 � pgd−Parid
� �

ð3Þ

Parid newð Þ ¼ Parid oldð Þ þ μ � vid newð Þ ð4Þ

where c1 and c2 are two positive constants named learning factors,
taking the integer value 2; r1 and r2 are random numbers in the inter-
val (0, 1). In Eq. (4), μ, a random number uniformly distributed in
(0, 1), is the restriction factor to determine velocity weight. The
particle's velocity is renovated by employing Eq. (3) according to its
previous velocity and the distances of its current position from its
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