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Model-based interpretation of empirical data is useful. But unanticipated phenomena (interferences) can give
erroneous model parameter estimates, leading to wrong interpretation. However, for multi-channel data,
interference phenomena may be discovered, described and corrected for, by analysis of the lack-of-fit residual
table— althoughwith a strange limitation, which is here termed the Informative Converse paradox: When a data
table (rows×columns) is approximated by a linearmodel, and themodel-fitting is done by row-wise regression,
it means that only the column-wise interference information can be correctly obtained, and vice versa. These
“windows into the unknown” are here explained mathematically. They are then applied to multi-channel
mixture data— artificial simulations as well as spectral NIR powder measurements— to demonstrate discovery
after incomplete row-wise curve fitting and column-wise multivariate regression. The analysis shows how the
Informative Converse paradox is the basis for selectivity enhancement in multivariate calibration. Data-driven
model expansion for statistical multi-response analyses (ANOVA, N-way models etc.) is proposed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Incomplete knowledge is the rule

Mathematical models of real-world systems are often incomplete,
either because they reflect incomplete knowledge or because they are
consciously simplified for a given purpose. Incomplete models can be
very useful, e.g. to encapsulate knowledge and to study specific aspects
of a system.However,when an incompletemathematicalmodel isfitted
to empirical data, unmodeled phenomena can cause grave systematic
alias errors in the resulting parameter estimates. This is a general and
well known problem in e.g. linear statistical modeling, but it is handled
differently in differentmodel types. Somepragmaticmodelingmethods
automatically correct for unidentified interferences by purely data-
driven means, for instance within the field of multivariate calibration
[1]. More causally oriented methods require conscious, explicit
modeling of interferences. This difference warrants clarification. More
importantly, there is a need for generic methodology that reveals and
describes unanticipated phenomena in data, beyond what is already
understood and modeled — i.e. windows into the unknown.

This paper demonstrates the potentially damaging effect of
unanticipated phenomena on parameter estimates due to incomplete
modeling. But it also shows away to study these phenomena, and how
this is used implicitly in multivariate regression modeling. The
methodology to be presented is generic for models fitted by

unrestricted linear least squares, and probably for other situations
as well. Multivariate calibration of spectroscopic data of chemical
samples will be used as example, since it is easy to visualize.

1.2. How does multivariate calibration compensate for unidentified
interferences?

In multivariate calibration [1], multichannel input data that are
highly non-selective due to more or less unidentified interferences,
may be converted into selective output information about analytes. In
most cases the interference handling is done implicitly. It would be
desirable if unexpected and unidentified interferences could be more
easily discovered and characterized from calibration data, because
multivariate calibration could then give more valuable contributions
to the over-all scientific process of knowledge generation.

Traditional univariate calibration employs a very simple model
c≈ f1(y) relating c, the concentration of the analyte of interest, to y, a
given property measured, e.g. light absorbance at a certain wave-
length. Once the calibration model f1(·) has been established, it may
be used for predicting c from y in new samples, ĉ=f1(y). The
calibration model is often linear and based on a presumed causal
relationship between the two: y≈ f2(c), e.g. in spectroscopy.

To give correct results, such a univariate calibration requires a
selective, one-to-one correspondence between c and y. Chemical
substances that interfere with measurement y have to be removed
physically from the samples prior to measurement, otherwise they will
masqueradeas “analyte signal”and thus cause alias errors in thepredicted
value ĉ. In contrast, multivariate calibration [1] allows many selectivity
problems tobe removedmathematically, and therebyallowssamples tobe
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measured without any physical sample clean-up. Multivariate calibration
is therefore used extensively in chemistry and many other fields. Linear
calibration models are often used, because of their simplicity and their
goodapproximationability. Several different linearmodelingmethods are
used for multivariate calibration, but they often give similar results, and
they all may be formulated as predictors of the form ĉ=f1(y), where
y (1×q) is vector of measurements at q different channels.

Multivariate calibration can provide clean information from dirty
data — selective concentration estimatesĉ from non-selective measure-
ments y. But what makes it work so well? Why are the concentration
predictions ĉ free of alias errors, in spite of gross, unidentified
interferences in y? And beyond the selectivity enhancement clean-up,
can the nature of the “dirt” itself be identified from the data?

Statistically speaking, the multivariate calibration methods work —

implicitly or explicitly — by compensating for response similarities
between analyte and interferences (unexpected chemical constituents
and other chemical or physical effects present). This can be done in
different ways, all of which seek to estimate and correct for analyte/
interference covariances, in terms of between-variables spectral overlap
and/or in terms of between-sample intercorrelations. But statistical
covariance correction is difficult to understand, at least for non-
statisticians. This paper shows that multivariate residual analysis
simplifies the covariance correction and offers additional discovery
tools, applicable even in more classical statistical analyses.

1.3. Paradox: what we know the least about can be seen most clearly

The general problem addressed in this paper is the following:
Assume that we want to analyze a system that is controlled by several
causal phenomena, but where we only anticipate some of these
phenomena — the others are totally unexpected. How will the latter
affect our ability to quantify and interpret the former? To what extent
can we discover and describe even these unexpected phenomena?

This paper showshownew insight about the “dirt”— theunexpected,
unidentified interferences— can be obtained frommulti-channel data. In
fact, it proves that we can get more accurate information about the
unexpected interferences, aboutwhichwe knownothing, than about the
expected analytes, about which at least we know the spectra or the

concentrations. Moreover, the nature of this accurate, new information
about the unexpected interference phenomena is the converse of the
background knowledge that we usedwhenmodeling the observed data.
This means that if our knowledge about the analytes consists of rows
(analyte spectra), then the accurate information about the interferences
consists only of the converse columns (interference concentrations), and
vice versa. All other parameters will have alias errors in their estimates.
Therefore it is here called the Informative Converse (IC) paradox.

Fig. 1a) illustrates a simple situation where the IC paradox applies:
A set of q different properties (attributes, channels; also called
"variables") have been measured in n different samples (locations in
time and space, individuals; "objects"), and collected in a data table Y
(n×q). We expect the variations in the measured signals Yexpected to
have been caused by varying levels of a recognized phenomenon (e.g.
a chemical constituent) — or of several such expected phenomena —

plus randommeasurement noise. But unknown to us, there are other,
completely unexpected sources of variation Yunexpected in the system
that also affect the measured data Y. The IC analysis shows what
information can and cannot be derived from Y, depending on what is
known about the analyte(s) in Yexpected and on the nature of
Yunexpected.

Technically, the basic IC analysis combines two well-known
techniques, linear regression (projection) to model the empirical
data Y in terms of prior knowledge about the analytes, followed by a
bi-linear decomposition of the lack-of-fit residuals in Y. The IC analysis
to be presented here is generic for additive systems. It will be
illustrated in a calibration framework, but applies equally well to
other linear regression-based modeling methods used in statistics,
such as multi-response analysis of variance (ANOVA).

The IC analysis to be presented here is graphically oriented and
mathematically simple — almost a banality — and not even new. To
perform Principal Component Analysis (PCA) of residuals in Y after
fitting a model Y≈ f(X) by e.g. Ordinary Least Squares (OLS) or Partial
Least Squares (PLS) regression, has surely been done by numerous
researchers in statistics and chemometrics. But the specific interpre-
tation opportunities that the residual PCA offers, does not seem to be
well known, or at least not used much in practice. The IC paradox
associated with the interpretation of lack-of-fit residuals by PCA was,
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Fig. 1. The Informative Converse, illustrated for the linear two-constituent linear mixture model Y=cs′+dz′+F. a) Mixtures with unanticipated interference problems:
multichannel data table Y is a sum of an expected analyte contribution, an unexpected, but systematic interference contribution and random errors F. b) Hypothesis H1: modeling
mixture data Y by known analyte spectrum s yields correct interference concentration estimates d, but erroneous estimates of analyte concentrations c and interference spectrum z.
c) Hypothesis H2:modeling mixture data Y by known analyte concentrations c yields correct interference spectrum z, but erroneous estimates of analyte spectrum s and interference
concentrations d.
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