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1. Introduction

Classical multilinear regression [1–3] provides just one
solution which is obtained by the least-squares method. PLS
(Partial least squares) regression [4–6] has as many solutions as
the number of coefficients in the mathematical model. Among
these solutions it is then possible to choose the one which meets,
at the best, a criterion of optimization. But the number of solu-
tions is limited and the best solution could be between two PLS'
solutions and the optimization is only partial. This is why Se-
quential Orthogonal Linear (or SOL) regression was proposed.
This regression has an infinite number of solutions and the
expectation space is entirely covered. It is then possible to find
the best solution using experimental designs or statistical op-
timization tools as simplex, golden section or Fibonacci series.

2. Classical multilinear regression

Data are represented by a linear model:

y ¼ Xaþ e ð1Þ
Where

• y is the vector of random variables (n,1) or response vector.
This vector can be illustrated in the (n)dimensional
orthogonal space, Rn, spanned by the n responses.

• X is the matrix (n,p) of the regressors. This matrix is assumed
to be of full rank. According to Bates and Watts [2] the
expectation space is the (p)dimensional subspace, Rp, of Rn

defined by the p columns of X. This space can also be named

“regressor space”. Each point of this subspace represents a
set of coefficients which is a potential solution of the
regression.

• a is the parameter vector (p,1) of the linear model.
• e is the deviation vector (n,1).

As there are n variables y, and p parameters, there are n
equations and n+p unknowns. The p missing equations are
deduced from the least-squares criterion. The regression system
is then:

y ¼ Xaþ e
∂ t e e
∂ a

¼ 0

(
ð2Þ

Under classical assumptions, the multilinear regression
provides the solution:

ŷ ¼ Hy ð3Þ
where

• ŷ is the expected response vector (n,1) orthogonally
projected onto the expectation space.

• H is the projection matrix or “hat” matrix, given by:

H ¼ X½tXX�−1 tX ð4Þ
The residual vector is equal to:

̂e ¼ ðI−HÞy ð5Þ
And the least-squares estimate of the parameters is:

â ¼ ðtXXÞ−1 tX ̂y ð6Þ
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3. SOL regression

3.1. General properties

Instead of projecting the response vector orthogonally onto
the expectation space, it can be projected orthogonally on a
specific direction Δ1 (defined by the unit vector t1) of this space
[7]. The system has n equations and n+1 unknowns. The least-
squares criterion gives the missing unknown. Then, the
regression system is:

y ¼ Xb1 þ e
∂ tee
∂ k

¼ 0

b1 ¼ k t1

8><
>: ð7Þ

where

• b1 is the matrix (p,1) of the parameters. These parameters are
proportional to the direction parameters of t1.

• t1 is the matrix (p,1) of the direction parameters ofΔ1. These
parameters are known as they are chosen by the experimenter.

• k is a coefficient of proportionality. This is the unknown.

The solution is (Fig. 1):

ỹ1 ¼ H1y ð8Þ

where

• ỹ is the projection of the response vector y (n,1) onto Δ1.
• H1 is the projection matrix onto Δ1, given by:

H1 ¼ Xt1½tt1 tX Xt1�−1 tt
1

tX ð9Þ

The residual vector is equal to:

e1 ¼ ðI−H1Þy ð10Þ

And the least-squares estimate of the parameters corres-
ponding to ỹ1 is:

b̃1 ¼ ðtXXÞ−1tX ỹ1 ð11Þ

We have

y ¼ ỹ1 þ e1 ð12Þ

The orthogonal projection of the residual vector e1 onto the
expectation space is BH (Fig. 1). The triangle “ỹ1, BH, ŷ” is a
right-angled triangle, and B is on the hyper-sphere whose
diameter is ŷ. Then, the complete decomposition of e1 ends in ê
and the regression solution is ŷ.

The number of dimensions of the expectation space is equal
to the number of model parameters: p.

As one direction has been used, theΔ1 direction, the residual
vector e1 can be projected on the (p−1)dimensional subspace
which is orthogonal to Δ1. This subspace is defined by the

columns of the Xr1 matrix which is obtained by the orthogonal
projection:

Xr1 ¼ ðI−H1ÞX ð13Þ
A new direction, Δ2, is chosen in this new subspace and is

defined by the vector t2. The residual vector e1 is projected onto
this direction. The regressed vector, ẽ2, and the corresponding
residual vector, e2, are obtained (Fig. 2):

ẽ2 ¼ H2e1 e2 ¼ ðI−H2Þe1
with

H2 ¼ Xr1 t2½tt2 tXr1 Xr1 t2�−1 tt2
tXr1

The second solution of the regression is:
ỹ2 ¼ ỹ1 þ ẽ2

The residual vector e2, corresponding to the projection of e1
ontoΔ2, can be projected on aΔ3 direction belonging to the (p−2)
dimensional subspace which is orthogonal to Δ1 and Δ2. This
subspace is defined by the Xr2 matrix:

Xr2 ¼ ðI−H2ÞXr1

The residual vector, e2, being projected onto the Δ3 direc-
tion, the regressed vector, ẽ3, and the corresponding residual
vector, e3, are obtained as follows:

ẽ3 ¼ H3 e2 e3 ¼ ðI−H3Þe2
where

H3 ¼ Xr2 t3½tt3 tXr2Xr2 t3�−1 tt
3

tXr2

The third possible solution of the regression, ỹ3, is (Fig. 3):

ỹ3 ¼ ỹ2 þ ẽ3 ¼ ỹ1 þ ẽ2 þ ẽ3

The residual vectors are successively decomposed until the
classical least-squares solution, ŷ, is found.

Fig. 1. Vector y is decomposed on theΔ1 direction into a regressed vector ỹ1 and
a residual vector, e1.
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