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In this paper, a new concept of similarity is introducedwith the aim of detecting higher-order similarities among
objects, and meta-distances and meta-similarities are derived from it. A total of 100 meta-distances were ob-
tained from a set of ten classical distances and were compared, in terms of classification performances, against
classical distance measures. Classification methods based on local similarity analysis and several benchmark
datasets were used. In several cases, the non-error rate (NER) of classifiers based on the newmeta-distances sig-
nificantly increased with respect to that of the classical Euclidean distance.
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1. Introduction

The concept of similarity represents how close two entities are ac-
cording to the analogy of their features. Despite its being very intuitive,
a formal definition of similarity (and of its counterpart, the distance) is
fundamental for themathematical treatment of analogous/different en-
tities. Starting from Euclid and later with the rise of the twentieth cen-
tury mathematics, many measures of similarity and distance have
been proposed [1–3], so that every definition enables capturing anal-
ogy/difference under different points of view.

Because of their ability to quantitatively grasp the analogy between
entities, distance/similarity metrics have been playing a crucial role in
many fields, such as Quantitative Structure-Activity Relationship
(QSAR) [5,6,29], food authentication [7–9], outlier detection [10–13]
and drug discovery [14–16]. This underscores the potential of introduc-
ing and studying new metrics.

This work, in particular, leverages well-established distance metrics
into a novel definition of meta-distance, able to capture higher orders of
diversity. The proposed measure melds first-order diversity measures,
which detect the basic information about diversity relationships, with
a second-order measure, which encodes the respective (dis)similarity
of two entities with all the remaining ones. The new measure is able

to encode surprisingly different aspects with respect to the traditional
metrics.

In particular, ten well-known distances were used to generate 100
meta-distances, whose potential was tested on 30 benchmark datasets
of different nature. The effect of the newly introduced similarity/dis-
tance concept was tested on three local classifiers (KNN [17], N3 [18]
and BNN [18]), which use a certain number of similar objects (neigh-
bors) to predict a new object’s class as a majority vote of the neighbors.
As they are local methods, the dissimilarity measure used to select the
nearest neighbors plays a fundamental role in determining the classifi-
cation outcomes. Moreover, their differences in how the neighborhood
contributes to the final predictions were used to obtain additional in-
sights into the role of the distance measures.

After presenting the theory, this work investigates the role of meta-
distances on all the chosen datasets andmethods, using the ten classical
distances as the benchmark.

2. Theory

Ameta-distance is obtained by combining traditional distance mea-
sures (here named primary distances) with a newly proposed adjunct
dissimilarity, which acts as a smoothing factor of the primary distance.
The rationale and the mathematical definitions of these concepts are
here outlined: after summarizing the concepts regarding the well-
established (primary) distances, the meta-distances are introduced fo-
cusing on the role played by the adjunct dissimilarity factor.
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2.1. Primary distance measures

A distance is a numerical description of how far apart entities
are. In particular, given two objects x and y described by a set of
p variables, their distance (Dxy) is calculated starting from the dif-
ferences in their variable values: the higher the differences, the
more different the two objects. Obviously, these differences can
be mathematically quantified in many ways [19], and, in this
work, a set of ten classical distance measures was used (Table 1).
As they are calculated with different algorithms, all the variables
were previously range-scaled between 0 and 1, allowing for a di-
rect comparison.

Since all the distances are in the range [0, 1], the calculation of a cor-
responding similarity measure (Sxy) is as follows:

Sxy ¼ 1−Dxy ð1Þ

where Sxy ranges from 0 to 1.

2.2. Meta-distance

Distance functions of Table 1 between two objects measure di-
versity and, thus, the greater the distance the more different the
objects. These functions are first-order diversity measures, that is,
they detect the basic information about diversity relationships.
However, two objects can be compared also on a relative scale
by observing their respective (dis)similarity with all the remain-
ing objects of the set they belong to: the more comparable their
similarity with the remaining objects, the more similar the
objects.

Let x and y be two objects belonging to a set of n objects, then the
meta-distance Dxy

(M) here proposed is defined as the product between a
primary distance Dxy and a correction factor α, hereinafter referred to

as adjunct dissimilarity, which takes into account higher-order (dis)-
similarities:

D Mð Þ
xy ¼ α � Dxy ð2Þ
The adjunct dissimilarity α is defined as:

α ¼ e−2�Pxy 0:1353≤α≤1 ð3Þ

where the term Pxy, which quantifies higher-order similarities, is calcu-
lated as:

Pxy ¼

Xn
z≠x
z≠y

δ zð Þ

n−2
δ zð Þ ¼ 1 if

1þ min Dxz;Dyz
� �

1þ max Dxz;Dyz
� � ≥t

0 otherwise

8<
: ð4Þ

where Dxz and Dyz are the primary distances between any z of the set,
and x and y, respectively; t is a threshold that defines the range in
which Dxz and Dyz are considered as equivalent. In this work, t was set
to a value of 0.97. Note that Dxz and Dyz can be any chosen primary dis-
tance (e.g. from Table 1). The resulting Pxy is the proportion of the n-2
objects sharing similar distances with both x and y. Consequently, the
higher this proportion, themore similar x and y to all of the other objects
are. In otherwords, the lower the adjunct dissimilarity, themore similar
x and y are from the viewpoint of the other objects. The exponent−2 of
Eq. (3) was defined in an empirical way and further studies could be
done evaluating the influence of other types of exponent on the primary
distance.

The adjunct dissimilarity α acts as a smoothing parameter of the pri-
mary distance: in fact, if x and y have a high proportion of common sim-
ilar z objects, their α will be low and Dxy

(M) b Dxy; on the contrary, if no
common similar objects are found, α will be equal to one and, thus,

Table 1
List of the ten primary distances. Dxy is the distance measure between objects x and y according to their values of p variables.

ID Name Acronym Distance

1 Average Euclidean Euc

DEuc
xy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
p

j¼1
ðxj−yjÞ2

p

vuuut
2 Average Canberra Can

DCan
xy ¼ 1

p �∑
p

j¼1

jx j−yjj
jxj þ yjj

3 Lance-Williams LW

DLW
xy ¼

∑
p

j¼1
jxj−yjj

∑
p

j¼1
jx j þ yjj

4 Average Manhattan Man
DMan
xy ¼ 1

p �∑
p

j¼1
jx j−yjj

5 Lagrange Lag Dxy
Lag=maxj |xj−yj |

6 Average Clark Cla
DCla
xy ¼ 1

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
p

j¼1
ðjx j−yjj
xj þ yj

Þ
2

s

7 Average Matusita Mat

DMat
xy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
p

j¼1
ð ffiffiffiffiffi

x j
p

−
ffiffiffiffiffi
yj

p Þ2

p

vuuut
8 Soergel Soe

DSoe
xy ¼

∑
p

j¼1
jxj−yjj

∑
p

j¼1
maxðxj; yjÞ

9 Average Wave-Edges WE
DWE
xy ¼ 1

p �∑
p

j¼1
ð1− minðx; yÞ

maxðx; yÞÞ

10 Jaccard-Tanimoto JT

DJT
xy ¼ 1−

∑
p

j¼1
x j � yj

∑
p

j¼1
x2j þ∑

p

j¼1
y2j −∑

p

j¼1
xj � yj
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