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Predicting the degradation of working conditions and trending of fault propagation before they reach the alarm
or failure control limit is significantly important to optimize the operational capacity of a chemical process. How-
ever, traditional one-step-ahead (OS) soft-sensors render such benefits inadequate. Direct, Recursive and Direct-
recursive strategies are proposed to generalize the Gaussian Process Regression (GPR) model for multi-step-
ahead (MS) prediction, thereby supporting the fault diagnosis and prognosis of the product qualities control
for chemical processes. The proposedmethodologywas firstly demonstrated by applying the designed algorithm
to a wastewater plant (WWTP) simulated with the well-established model, i.e., Benchmark Simulation Model 1
(BSM1), then extended to a full-scaleWWTPwith data collected from the field influenced by filamentous sludge
bulking. Results showed that the proposed strategies significantly improved the prediction performance.
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1. Introduction

Early detection and diagnosis of the occurrence of an abnormal
event in a chemical process is very important for ensuring plant safety
and maintaining product qualities. Tremendous advancements in the
area of instrumentation have made measure hundreds of variables
every few seconds possible. These measurements have brought in use-
ful signatures about the status of the plant operation and also have pro-
moted a wide variety of techniques, for detecting faults [1,2].

Typically, a fault is declared once monitored values cross over a pre-
defined control limit. The most commonly used methodologies for fault
diagnose aremultivariable statistics, such as Principal Component Analy-
sis (PCA) and Factor Analysis (FA) [3–5]. Thesemethods explore the data
collected from the process to build an empiricalmodel, which in turn acts
as a reference to justify the desired process behavior of the new data.
However, both of PCA and FA are premised on the assumptions that the
collected data supposed to follow specified distributions. Independent
Component Analysis (ICA) and its nonlinear version provide alternatives
to deal with this problem [6,7]. Nonetheless, aforementioned fault diag-
nosis strategies aremerely carried out during or after the breakdownmo-
ment [8]. These approaches are satisfied if a fault is not such urgent and is

able to be controlled during a short time. For most of cases, a significant
disaster could have occurred already, once a fault with respect to product
qualities has been recognized in a chemical process. If the selected prod-
uct qualities can be predicted properly, it would lead to better process
control performance in advance. Soft-sensors provide an alternative to
dealwith this problem. Soft-sensors arewidely used to estimate variables
that are difficult to measure online because of technical difficulty, large
measurement delays, high investment cost, and so on [9–11]. To build a
proper relationship between easy-to-measure variables x and those that
are hard-to-measure y, statistical methods including, but not limited to,
partial least squares (PLS) [12], Principal Component Regression (PCR)
[13], nonlinear PLS [14], support vector machine based regression [15]
are researched as the soft sensor models. Despite potential advantages,
few studies have devoted soft-sensors for fault diagnosis and prognosis
[16].

Due to classical soft-sensors limiting to one-step-ahead prediction,
the fault effects could have resulted in a disaster when the failure of
an operation process is indicated by out-of-control monitoring statis-
tics. Therefore, it would be too late for the engineers to make any cor-
rective actions with the reactive detection results. One of plausible
ways is to generalize one-step-ahead to multiple-step-ahead predic-
tions. Multiple-step-ahead prediction is a difficult task not only because
of predicted model construction but also the uncertainty analysis of the
resulted model. Currently, the form of the multiple-step-ahead predic-
tion depends only on the one-step-ahead model under linear assump-
tions regardless of nonlinear requirement of the multiple-step
predictor [17]. Various numerical and Monte Carlo methods have
been devoted to compute the multiple-step-ahead prediction when
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the nonlinear relationship between the one-step-ahead predictors and
responses as well as the innovation distribution are known. However,
these approaches are premised on assumptions of distribution being
known, and their resulting accuracy depends heavily on the adequacy
of themodel. Computational intelligencemethods such as artificial neu-
ral networks [18–20] and nearest-neighbors techniques [21,22] have
drawn the attention of the forecasting community to deal with the in-
adequacy of amodel formulti-step ahead prediction. To derive accurate
prediction of a fault, the model needs not only to capture strongly non-
linear effects of operational conditions, but also to be robust for the
presence of uncertainty and noises in a chemical process. If ignorance
of uncertainty or merely use of expectation of uncertainty, the predic-
tion performance could bepoor and result in deviation of fault diagnosis
or prognosis, thus leading to a unreliable operation of the system. Addi-
tionally, a standard regression-based prediction is accuracy-driven,
i.e., tominimize the residual errors between the prediction and training
values. However, the residual error is significantly worse when com-
pared to regression-based methods because the correlation between
the predictor and response variables remain invariant, which in turn,
hinders its ability to minimize residual errors [18,23]. To quantize the
uncertainties properly, distribution-driven models, such as Support
Vector Machine and Relevant Vector Machine, were presented to ap-
proach predicted distribution [18,24]. Also, a distribution-driven
model, Gaussian Process for regression (GPR), has been used for model-
ing both of linear and nonlinear dynamic systems simply using different
covariance matrix. Compared to neural networks and other
distribution-driven models, relatively few parameters need to be esti-
mated, which lessens the need for the complex optimization or regular-
ization schemes. Additionally, the prediction distribution of a GPR at a
set of test points is simply assumed as a multivariate Gaussian distribu-
tion [25]. This assumption will be able to serve as the basis for the un-
certainty description to facilitate decision making for fault
identification and control. Even though GPRs have been tested in chem-
ical processes, few attempts are used for fault diagnosis and prognosis.

To predict the occurrence of a fault in advance, the GPR model is re-
quired to extend to multi-step-ahead prediction necessarily. Two most
common strategies for multi-step-ahead forecasting are recursive and
direct prediction methodologies. In the first strategy, a multiple-step-
ahead prediction task with horizon H is tackled by iterating H times a
one-step-ahead predictor. Once the predictor has estimated the future
series value, the value is fed back as an input to the following prediction.
Hence, the predictor uses estimated values as inputs, rather than the ac-
tual observations, with evident negative consequences in terms of error
propagation [26,27]. Another way of performingH-step-ahead forecast-
ing is to estimate a set of H prediction models, each of which returns a
direct forecast at time. Direct methods often require a higher degree
of functional complexity than iterated ones [28], in order to model the
stochastic dependency between two series values at two distant in-
stants.When a very long term prediction is at stake and a stochastic set-
ting is assumed, the modeling neglects the existence of stochastic
dependencies between future values and consequently biases the pre-
diction accuracy. A possible way of remedying this shortcoming is to
combine recursive prediction and direct predicted ways. By combining
these two methodologies, stochastic dependency obtained from direct
strategy could propagate over a long term horizon by the iterative strat-
egy, hence improving the prediction performance of multi-step-ahead
prediction.

The objective of this study is to develop a multiple-step-ahead GPR
predicted model to monitor the evolution of hard-to-measure product
qualities in the chemical processes timely. The contributions of this
paper are summarized as follows: Firstly, direct, recursive and direct-
recursive strategies are proposed to extend the GPR model for
multiple-step-ahead prediction, and comparisons are made with
ARMA and RBFmodels formulti-step-ahead prediction. Due to selection
of different covariance for the GPR model conveniently, diverse nonlin-
ear relationships can be approached properly; Secondly, the uncertainty

information generated from multiple-step-ahead GPR would facilitate
the description of error propagation for ill-suited multi-step prediction
and model parameter identification; Thirdly, the obtained uncertainty
intervals are able to envelop the deviation of multi-step-ahead predict-
ed values, thereby providing pre-caution for fault diagnosis and progno-
sis during multi-step-ahead prediction.

In Section 2 the basic knowledge of GPR model are introduced.
Section 3 presents the multiple-step-ahead GPR soft-sensors. In
Section 4, the proposed direct, recursive and direct-recursive soft-
sensors are firstly validated through a WWTP benchmark with relative
stable operations to monitor the evolution of effluent BOD. Then, the
proposed soft-sensors are used to predict the evolution of Sludge Vol-
ume Index (SVI) and further to monitor the occurrence of filamentous
sludge bulking. Section 5 performs a discussion. Finally Section 6
concludes.

2. Preliminaries

2.1. GPR model identification

GPRmodel is a simple and general class of models of functions. To be
precise, a GPR is any distribution over functions in such way that any fi-
nite set of function values f(x1) , f(x2) ,⋯ , f(xN) have a joint Gaussian
distribution. GPR is usually formulated as follows: given a training set

D={(xi,yi)|i=1
N }c of N pairs of inputs xi and noisy outputs yi, compute

the predictive distribution of f at a new testing input x⁎. We assume
that the noise is additive, independent and Gaussian, such that the rela-
tionship between the (latent) function f (xi) and the observed noisy tar-
gets y are given by [29]

yi ¼ f xið Þ þ εi ð1Þ

ε � N 0;σ2
n

� � ð2Þ

f ∙ð Þ � GP 0; k ∙; ∙ð Þð Þ ð3Þ

where GP(0,k(∙, ∙)) represents a Gaussian processwithmean and covari-
ancematrix equaling to 0 and k(∙, ∙), respectively. The noise ε follows the
Gaussian distribution with mean 0 and covariance σn

2.
To be simple, we define covariance matrix K=kij. By inference, it

is easy to obtain that the outputs follow multivariate joint Gaussian
distribution:

y � N 0;Ky
� � ð4Þ

where Ky=K+σn
2I, Ky is the covariance matrix with dimension being

N×N, the corresponding (i, j)th element is

Ky
� �

ij ¼ cov yi; yj

� �
¼ k xi; xj

� �þ σ2
nδij ð5Þ

where δij is the Kronecker function. The difference of K and Ky is that K is
noise free but the other is not. In summary, the parameters needed to be
identified are formulated as θ=(θ′,σn

2), where θ′ represents the param-
eters of corresponding covariance matrix Ky. Assume the covariance
matrix is Squared-exp. (SE), the parameters are θ′=(σf, l). More details
for kernel selections can see Appendix part.

2.2. GPR model for predictions

Due to (y1,y2,… ,yN, f(x⁎))T following Gaussian distribution also, the
prediction at the location x⁎ can be obtainedwith themean and variance:

E f x�ð ÞjDð Þ ¼ k�K−1
y y ð6Þ

var f x�ð ÞjDð Þ ¼ k x�; x�ð Þ−k�K−1
y k� ð7Þ
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