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Selection methods are commonly used to retain only the least correlated variables when data are described by a
large number of variables. However, most of the currently available variable selection methods do not take the
intrinsic quality of the subset retained into account. In this paper, we propose a new approach based on a
multicriteria selection of variables. The intrinsic quality of the selected subsetwas assessed based on both criteria
calculated from the model matrix and the procrustes analysis. This verification guarantees a good estimation of
the coefficients for the model and a good representativity. This approach was applied to two cases: a benchmark
dataset known as Coffee data and a real dataset produced by a study of quantitative structure–activity relation-
ship. In both cases, the solutions were representative of the initial set and displayed good intrinsic quality, these
solutions will therefore be useable in the modeling step.
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1. Introduction

Quantitative Structure–Activity Relationship (QSAR) studies [1] aim
to establish a quantitative relationship between a molecule's activity
and its structure, its environment, its physico-chemical properties, etc.
The molecular characteristics, such as topology (Wiener index [2],
Randic index [3], etc.), geometry (distance, dihedral angle, etc.), or
structural characteristics are represented by descriptors, to quantita-
tively describe the molecules. Thus, the mathematical relationship
that we are looking to establish will depend on these descriptors. The
most frequently used model in QSAR studies is the linear model: Y =
f(descriptors) which links variations in one or more properties (Y) to
variations in values for the descriptors through a linear relationship.
The coefficients of this model can therefore be used to quantify the
contribution of each of the descriptors, provided the variables are
sufficiently precisely estimated.

Due to progress in computational chemistry, increasing numbers of
descriptors are proposed, with in some cases up to hundreds or even
thousands of variables [4]. As a rule, the descriptors which truly explain
the properties of themolecules are unknown, it is therefore common to
consider a very large number of them in the hope that themost relevant
will be included. However, this approach presents the risk of providing
redundant information. In addition, when the study relates to a particu-
lar family of molecules, the number of molecules studied is often small-
er than the number of descriptors, making it highly likely that some
descriptors are strongly correlated, as would be expected. In this case,
methods can be used to select variablesfiltering thedescriptors to retain

only the least correlated. This filtering must involve careful selection to
ensure that the model fits well with the variation in properties, making
it useable for predictive ends.

Numerous methods for variable selection have been developed to
select the least correlated subset of descriptors possible. Most of these
methods use linear correlation between variables, the specific values
obtained by singular value decomposition, or the loadings for principal
component analysis. Methods based on principal component analysis
are widely used, but they require treatment of linear combinations of
all the initial variables, which can make interpretation difficult at the
level of the phenomenon studied. Thus, it appears preferable to use
methods which conserve the initial descriptors rather than linear
combinations of these descriptors. In addition, current methods rarely
take into account or assess the intrinsic quality of the selected subset
for a given model. The new approach proposed here repairs this omis-
sion by selecting the least correlated variables while also considering
the intrinsic quality of the selection. Quality was assessed based on
criteria calculated from the model matrix, a procedure which
guarantees adequate precision when estimating the coefficients for
the model, on condition that the model has been validated.

The performance of this approach was tested on a benchmark
dataset (Coffee)which includes 43 samples described by 13 descriptors,
and on a real QSAR dataset where the number of descriptors (388) far
exceeded the number of molecules studied (26).

2. Methods for variable selection

When selecting variables, the aim is to reduce the number of dimen-
sions in the initial space while retaining as much information as possible.
Themost usedmethods concern the clustering of variables [5–11] which
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reorganize the data in the initial space into several clusters often by the
principal component analysis (PCA) [12] and one variable from each
cluster was selected, or the selection may be realized by using the
random forests [13] among many other methods but some may use the
experimental results [14,15]. Here, we chose to focus on methods for
variable selection, considering only the correlation between variables.
The best known and most recent methods are as follows:

• The pair correlation method [16], very often used in studies of
structure–activity relationships, uses a simple algorithm which
considers variables pairwise. A correlation coefficient is calculated
for each pair of variables, if it is equal to or greater than a defined cor-
relation threshold, the variable presenting the highest correlation
with all the other variables will be eliminated. This procedure is
performed iteratively.

• Todeschini et al. [17], suggested that the number of variables could be
reduced by calculating theK inflation factor (KIF), based on themul-
tivariate correlation index, K. This method relies on the hypothesis
that the structure of a database ismost often conservedwhen deletion
of a variable, j, results in a minimal multivariate correlation. The KIFj
value associated with the jth variable can be calculated from the
total multivariate correlation, Kp, and the index of multivariate
correlation, Kp/j, obtained from the data by deleting the jth variable.
The authors suggest that variables should be retained when their KIF
value is greater than a limit (which they set to 0.5).

• TheUFSmethod (Unsupervised Forward Selection) [18] uses an algo-
rithm that starts with the two variables with the weakest correlation,
and then selects additional variables correlating least with those
already selected. The algorithm stopswhen the correlation coefficient
for all the remaining variables with those already selected exceeds a
threshold. The UFS method thus seeks to select a subset of variables
close to orthogonality.

• The CMC method (Canonical Measure of Correlation) [19,20]
measures correlation between sets of variables and is used to select
the set that best reproduces the main characteristics of the full
dataset. This method can be used in a step-by-step procedure where
each variable is compared in turnwith the set of variables not contain-
ing the most correlated variable. This step is iterated using the
remaining variables until only two variables remain. At the end of
the elimination stage, the variables can be classed according to their
CMC index, and the subset of variables with the smallest CMC value
is included in the final subset.

• The V-WSP algorithmwas recently proposed by Ballabio et al. [21], it
was inspired by the WSP algorithm [22–26] which is used to build
Space-Filling Designs of experiments (SFD). The WSP algorithm
selects subsets of points spaced a minimal, pre-set distance apart,
while the V-WSP algorithm selects a subset of variables for which
the correlation never exceeds a pre-set correlation threshold (thr).
To make this selection, the algorithm uses the correlation matrix
and sets two parameters: an initial variable, which is the first variable
selected in thefinal subset, and a correlation threshold (thr). The algo-
rithm eliminates the variables for which the correlation coefficient
with the initial variable is greater than the threshold value, and pro-
gressively adds variables which present the largest correlation coeffi-
cient from among the remaining variables until all possible variables
have been selected. The V-WSP algorithm therefore requires selection
of an initial variable, Xi, along with a correlation threshold (thr). For
any given thr value, as many solutions as initial variables will be
calculated.

Although these different methods effectively select variables, they
do not take into account the intrinsic quality of the subset retained for
the hypothetical model. We therefore adapted and completed these
algorithms through a new approach selecting a subset of the least corre-
lated variables possible, which also takes into account the quality of the
model matrix associated with the selection when choosing the

variables. This intrinsic quality will be appreciated from different
criteria.

3. Criteria

The objective of the selection method was to extract a subset of the
least correlated variables,whilemaintaining themaximum information.
We therefore need criteria, on the one hand to assess the similarity
between the initial set and the subset, on the other hand to assess the
intrinsic quality of the subset for a given model.

3.1. Similarity criterion

In the V-WSP algorithm, the authors propose an indicator of similar-
ity: the procrustes criterion. Procrustes analysis [27–29] is a statistical
shape analysis which compares the shape of two structures: the first
serves as a reference and the second is deformed by linear transforma-
tions such as translation, rotation or scaling tomake it coincide as close-
ly as possible with the first. In the case of variable selection, the
procrustes criterion is calculated from the scores of principal component
analysis [12,30] of the initial set containing all the variables and of the
reduced set (the number of principal components retained will depend
on the dimensionality of the initial dataset). A value close to 0 will be
found for similar structures, while a value close to 1 indicates different
structures.

We chose to use this procrustes criterion to assess the similarity
between an initial set and a subset, the target value for this criterion
will be close to 0.

3.2. Model matrix criteria

The quality of the subset selected must be assessed relative to the
postulated model, which requires the calculation of appropriate
intrinsic criteria [31].

The empirical models used in QSAR studies, η= f (descriptors), are
generally of the type:

η ¼ β0 þ β1X1 þ…þ βkXk

where
Xi are the dimensionless variables associated with the real variables

(the descriptors), and βi are the coefficients to be estimated. The value
of βi will reflect the contribution of each descriptor to the variation of
the responses. The estimators of the coefficient should be accurate,
i.e., the expectation of the coefficients' estimators must be equal to the
value of the coefficients: E[bj] = β, and it must be precise, i.e., their
variancemust beminimal. The variance of the estimators can bewritten
as follows: var (bj) = cjj σ2, where cjj is the variance coefficient which
corresponds to the diagonal term in the (X′X)−1 dispersion matrix.
This dispersion matrix can be determined from the model matrix X.

The variance coefficient, cjj, must be low enough to guarantee good
accuracy, but it depends on the number of dimensions and points. It is
therefore preferable to use the variance inflation factor, VIF(bj), which

is the diagonal term of the inverse of the correlation matrix (VIFðbjÞ ¼

cjj ∑
i
ðxij−xj;meanÞ2 ). When all the VIF(bj) terms are equal to 1, both

the correlation and the dispersion matrix are diagonal, which means
that all the columns in the model matrix are orthogonal, implying
that, in the case of a linear model, there is no correlation between the
different variables. If the values for the diagonal are greater than 1,
this indicates a correlation between variables. We admit that a value
of the inflation factor greater than a threshold value (2 to 6 depending
on the authors), the information provided by the set considered is
estimated of insufficient quality for the postulated model [32].
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