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A comparative study between ChemicalMass Balance (CMB) andmultivariate receptormodeling techniqueswas
conducted. The study involved common application of Robotic Chemical Mass Balance (RCMB) and 2-
dimensional Positive Matrix Factorization (PMF). A two-fold methodology was developed for Source Apportion-
ment (SA) of reactive species, in order to address previous limitations of CMBmodels. The developedmethodol-
ogy (a) uses a detailed set of theoretical source profiles, taking into account secondary reactions that were not
considered in CMBmodelling until now, and (b) implements a Least Squares (LS) fitting method that iteratively
readjusts the values of independent variables in the CMB fit, providing (for the first time, to our knowledge) CMB
source profiles as output data, in which secondary transformations may be reflected. A straight-forward compu-
tational procedure named Factor Mapping (FM)was developed as well, for intercomparison between RCMB and
PMF. The distinctive feature of FM is that similarity measures are used not just to compare the results of the two
models, as in previous intercomparison exercises, but, moreover, to actively assist in the physical interpretation
of PMF factors, thusminimizing user interference. The intercomparison between RCMB and PMF also involved an
independent evaluation of eachmodel's performance in reproducing ambient concentrations of particulate mat-
ter (PM) and associated chemical constituents. Overall, it was shown that the employed series of computational
steps substantially improve qualitative as well as quantitative agreement between the two models.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The statistical analyses, which apportion observed concentrations of
aerosol components to sources, have been termed Receptor Models
(RMs). The major working hypothesis of all RMs is a rather simple
mass conservation argument, assuming that there is no chemical inter-
action between emissions from different aerosol sources. Under this
concept, it is possible to express the ambient concentrations of Particu-
late Matter (PM) and associated chemical species as linear sums of con-
tributions from individual sources, according to the following equation
[13,14,17]:

Cij ¼
Xn
k¼1

gik f kj þ eij⇔C ¼ G � F þ E ð1Þ

where Cij is the measured concentration of species j in sample i (μg m−3),
gik is the contribution of source k to sample i (μgm−3), fkj is themass con-
centration of species j in source k (μg μg−1), eij is the error residual for each
sample/species, and C, G, F, and E are the corresponding matrices.

There are twomain categories of RMs, characterized by the degree of
“a priori” knowledge that is required for pollutant sources affecting the
study area. A common scenario is that themajor sources are known and
their emissions have been chemically characterized, i.e. the values of
matrix F are provided as input data. In that case, Eq. (1) defines a Multi-
ple Linear Regression (MLR) system for each ambient sample i, known
as Chemical Mass Balance (CMB), which can be fitted by minimizing a
Least Squares (LS) likelihood function (χi).

On the other hand, if there is little information about the chemical
characteristics of source emissions, then Eq. (1) can be considered as a
bilinear model, to which Factor Analysis (FA) may be applied, in order
to produce a physically reasonable set of values for both matrices G
and F. Depending on the constraints applied toG and F, there are various
decomposition algorithms, such as Principal Component Analysis
(PCA), UNMIX, PositiveMatrix Factorization (PMF), aswell as other fac-
tor analytical models [13,14,16,17,25–27].

Both categories of RMs are known to have their own strengths and
weaknesses. Onemajor disadvantage of CMBmodels arises from the as-
sumption that chemical species do not react with each other, i.e. they
add linearly in Eq. (1). This cannot be the case in the real world,
where primary source emissions may undergo intense chemical trans-
formations in the atmosphere to form secondary aerosols, before
reaching the receptor site.
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In order to overcome this problem, the current practice, followed by
CMB modelers, is to apportion the primary material that has not
changed between source-receptor, and then, the remaining quantities
of reactive species are apportioned using theoretical source profiles
that correspond to secondary chemical compounds rather than directly
to sources [39]. However, the particular methodology has been limited,
so far, to a few chemical compounds (mainly ammonium sulphate and
nitrate) that are formed by gas-to-particle conversions, neglecting
other heterogeneous reactions that occur vastly in the atmosphere,
too [12].

Multivariate RMs, on the other hand, can indeed apportion factors
that may be linked to various secondary aerosols, since these models
are based on information gathered at the receptor site, alone. Neverthe-
less, this commonly accepted advantage of multivariate RMs comes at a
price, as there is often some inherent rotational ambiguity, present in
any solution of a bilinear model [21,24].

Another challenging task regarding both categories of RMs is to
establish an appropriate methodology for expressing model reliabil-
ity and quantitative uncertainty levels, since, in the real world, one
cannot check the model outputs against the actual values of source
contributions [20]. So far, comparing the results of different RMs
with each other, and/or against the ones of dispersion models,
seems to be the most plausible way of determining their overall un-
certainty, for this reason, it has become advisable for every source
apportionment study to validate results by cross-checking with in-
dependent methods [11,41].

Previous intercomparison exercises have shown that CMB and
multivariate RMs can both be successful in reproducing the total
PM mass accurately, with good agreement regarding source identifi-
cation [37]. On the other hand, there is often less comparability be-
tween the input source profiles that are employed for CMB
modeling and the output source profiles that are correspondingly re-
solved by multivariate RMs [18]. In some cases, large differences
have also been obtained, regarding the quantification of source con-
tributions. For example, Yin et al. [41] found the estimates of the two
model groups to differ by a factor of around 1.5 to 2, while even larg-
er differences (up to a factor of 4) were reported by Viana et al. [37].
Further research is clearly needed to access whether RMs have actu-
ally become robust enough for integration into policy-making tools
[11,12,18,33,37,41].

In view of the aforementioned need, this work presents a compara-
tive study utilizing a series of computational steps, which substantially
improve qualitative as well as quantitative agreement between a CMB
and a multivariate receptor model. The study involved common appli-
cation of Robotic Chemical Mass Balance (CMB), and 2-dimensional
Positive Matrix Factorization (PFM2).

A two-fold methodology was developed for Source Apportion-
ment (SA) of reactive species, in order to address previous limita-
tions of CMB models. The developed methodology (a) uses a
detailed set of theoretical source profiles, taking into account sec-
ondary reactions that were not considered in CMB modelling until
now, and (b) implements a LS fitting method that iteratively
readjusts the values of matrix F, providing (for the first time, to our
knowledge) CMB source profiles as output data, in which secondary
transformations may be reflected.

A straight-forward computational procedure named FactorMapping
(FM) was developed as well, for intercomparison between RCMB and
PMF. FM involves an iteration loop, which explores (a) the strength of
correlation between source compositions and (b) the degree of conver-
gence between source contributions estimated by the two models. The
distinctive feature of FM is that similarity measures are used not just
to compare the results of the two models, as in previous intercompari-
son exercises, but, moreover, to actively assist in the physical interpre-
tation of PMF factors. RCMB and PMF were also subjected to an
independent evaluation of their performance in reproducing ambient
concentrations of particulate matter (PM) and associated chemical

constituents. The proposed approach for intercomparison between the
two RMs is user independent, so it is expected to be useful in other ex-
ercises, as well.

2. Materials and methods

2.1. The ambient data set

The ambient data set was acquired from a PM10 sampling cam-
paign that was carried out in Thessaloniki (40°38′E, 22°56′N),
Greece, during the cold and the warm period of year 2007. The sam-
pling site was located in the center of the city, at a place influenced
by moderate traffic (~11,000 vehicles day−1) and surrounded by
commercial shops and residential buildings. Sampling equipment
was situated on the roof (~3.0 m above ground level) of an air-
quality monitoring station.

Sixty three 24-hour PM10 samples were collected, according to EN-
12341, using two identical Low Volume PM10 Samplers (flow rate
2.3m3/h) operating in parallel. PM10was collected on high purity quartz
filters (TissuquartzTM, Pall) prefired at 500 °C for 4 h, and on Teflon fil-
ters (Zefluor, Pall 2 μm). The PM10masswas gravimetrically determined
on quartz filters, according to EN-12341.

Chemical analysis of PM10 has been described elsewhere [34].
Briefly, OC and EC were determined on punches of quartz filters by
the Thermal Optical Transmission method. Ions (Na+, NH4

+, K+,
Mg2+, Ca2+, Cl−, NO3

−, SO4
2−) were measured using ion chromatog-

raphy following extraction of quartz filter sections with an ultra-
pure water-isopropanol mixture (9:1 v/v). Elemental constituents
(Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr,
Cd, Sn, Te, Ba, and Pb) were determined on Teflon filters by Energy Dis-
persive X-Ray Fluorescence (ED-XRF) analysis. There were not any miss-
ing values, while concentration values below the Limit of Detection (LOD)
were substituted by LOD/2. More detailed information about the ambient
data set is provided in the Supplementary Material (SM).

2.2. CMB modeling

2.2.1. Robotic vs. conventional CMB modeling
Robotic Chemical Mass Balance (RCMB) was developed and validat-

ed in Argyropoulos and Samara [5] and it has been used, ever since, for
SA of PM in variousGreek locations [3,4]. Briefly, RCMB is realized by ap-
plying a LS fitting method to each and every one of the possible combi-
nations that can bemade from the source profiles included to a given set
of input data. Any converging applications of the employed LS fitting
method are automatically ranked, during run-time, according to stan-
dard performance measures of previous CMB models, such as the ones
of the US EPA CMB 8.2 model, which are given in Table 1. After the LS
fitting method has been applied to all possible combinations of source
profiles, if there are any converging applications meeting the individual
performance measures, they are ranked according to an overall fitting
index.

The explicit advantage of RCMB is that the best-fit combination of
source profiles derives automatically from themaximization of an over-
allfitting index, providing amathematically unique solution,which can-
not be questioned readily, unless additional information becomes
available for the study area [5]. It should, however, be noted that there
is still no sufficient guarantee that the source contribution estimates
will be realistic, if the employed source profiles have been unrepresen-
tative of emissions at the receptor site.

2.2.2. CMB methodology for allowing the source profiles to vary
The standard method for fitting CMB models has so far been a

modification of Britt and Luecke's algorithm [7], known as the Effec-
tive Variance Weighted Least Squares (EFWLS) solution [40], which
takes into account both ambient (σCij) and source (σfkj) measure-
ment uncertainties. In its full form, the algorithm of Britt and Luecke
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