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In this study, a new quantitative structure–property relationship (QSPR) has been proposed to estimate true
vapor–liquid critical volume of multi-component mixtures. In developing this model, 598 experimental data
on true critical volume for 110 different binary mixtures were applied. The mixture molecular descriptors
were computed according to the molecular descriptors of pure components involved in the mixture and their
molar fractions. Enhanced replacement method (ERM), as an effective tool for subset variable selection, was uti-
lized. The proposedmodel is simple multivariate linear equations with six variables. The prediction capability of
the proposedmodel for different families of compoundswas critically analyzed. Besides, the capability of the pro-
posedmodel has been tested by predicting true critical volume of 7 differentmulti-componentmixtures contain-
ing 40 experimental data points. The average absolute relative deviation of the proposed QSPR model over all
experimental data is 9.7% and 8.7% for binary mixtures and multi-component mixtures, respectively.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Accurate estimation of critical properties of mixtures is important in
studying the overall phase behavior [1–3]. Several practical applications
such as designing super critical-fluid extraction processes, compression
and refrigeration units and evaluation of the probability of retrograde
condensation or evaporation are dependent on the understanding the
critical behavior of multi-component mixtures [4,5]. The best method
to determine the critical properties of amulti-componentmixture is ex-
perimental measurement. However, these measurements are often ex-
pensive and laborious, thus, prediction methods, including theoretical
and empirical models become valuable.

Different approaches, including fast estimation methods and rigor-
ous methods have been followed for prediction of true critical proper-
ties for multi-component mixtures [6]. We have recently conducted a
critical review on the applicability of the fast estimation methods [7,
8]. Besides, differentmethods for estimation of true vapor–liquid critical
properties of mixtures were evaluated and compared in details, else-
where [1,2,9,10]. Rigorous methods have several advantages such as
their basis in thermodynamics, their capability in predicting global crit-
ical behavior and also building complex phase envelops.

However, as it has beenmentioned byNajafi et al. [6], thesemethods
suffer from some disadvantages such as inaccuracies related to the
mixing rules or binary interaction coefficients of the equations of

state. Besides, the largest deviations are observed for the prediction of
critical volume in comparison with the other critical properties [11].

Fast estimation methods have advantages such as low computa-
tional cost, and simplicity of application. However, as the fast estimation
methods are empirical techniques based on binary interaction parame-
ters, their prediction accuracy is mainly dependent on the availability of
experimental data [12,13] and these methods are not applicable to the
mixtures containing new designed compounds for which no experi-
mental data or fitted interaction parameters are available. Moreover,
vapor–liquid critical volume measurement for a mixture is usually an
expensive and difficult task, and so the available data in the literature
is rare and hard to find.

Quantitative structure–property relationship (QSPR) is another ap-
proach for prediction of different physical properties [14–20]. In this ap-
proach, the considered physical property is correlated in term of
parameters relating to the molecular structure. These molecular-based
parameters are calledmolecular descriptors. Certainmathematical algo-
rithms have been applied in order to calculate molecular descriptors
from the chemical structure of the components. The developed model
can be applied to predict the property of new designed compounds
solely from their molecular structure. Katritizky et al. [14] reviewed
the QSPR models proposed for prediction of critical properties of pure
compounds. Despite the availability of a large number of proposed
QSPR models for prediction of physical properties of pure compounds,
a few QSPR models for mixtures have been developed. Following to
the introduction of QSPR methodology to the mixtures by Ajmani
et al. [21], a few works have been carried out in the development of
QSPR models for the prediction of different physical properties of
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Table 1
The main specifications of the data set on true critical volume of binary mixtures.

No. Component A Component B n xBmin xBmax Ref.

1 Butan-1-ol Benzene 6 0.112 0.899 [25]
2 2,2-Dimethylpropane Propane 5 0.158 0.934 [25]
3 Dodecafluorocyclohexane 1,2,3,4,5,6-Hexafluorobenzene 4 0.203 0.803 [25]
4 Ethanol Benzene 7 0.014 0.875 [25]
5 Ethylene Carbon dioxide 5 0.132 0.744 [25]
6 Ethylene methylamine 11 0.141 0.923 [25]
7 n-Heptane n-Butane 5 0.159 0.940 [25]
8 Methanol Benzene 9 0.044 0.889 [25]
9 Methanol n-Hexane 3 0.416 0.845 [25]
10 n-Pentane Methane 10 0.295 0.824 [1,25]
11 1-Pentene n-Pentane 3 0.249 0.790 [25]
12 Perfluorobutane Trifluoroacetic acid 4 0.178 0.793 [25]
13 Perfluorocyclobutane Monochlorotetrafluoroethane 1 0.770 0.770 [25]
14 Propane Perfluorocyclobutane 7 0.075 0.752 [25]
15 1-Propanol Benzene 7 0.015 0.899 [25]
16 Methane Propane 13 0.254 0.900 [1]
17 Methane n-Heptane 4 0.150 0.200 [1]
18 Methane n-Octane 2 0.202 0.213 [1]
19 Methane n-Nonane 4 0.115 0.140 [1]
20 Methane n-Decane 12 0.095 0.261 [1]
21 Methane n-Butane 7 0.229 0.640 [1]
22 Methane n-Hexane 1 0.253 0.253 [1]
23 Ethane n-Heptane 5 0.032 0.735 [1]
24 Ethane n-Decane 8 0.005 0.302 [1]
25 Propane n-Butane 11 0.074 0.853 [1]
26 Ethane n-Butane 5 0.053 0.825 [1]
27 Propane n-Pentane 9 0.122 0.853 [1]
28 Propane n-Hexane 11 0.078 0.857 [1]
29 Propane n-Octane 7 0.041 0.786 [1]
30 Propane n-Decane 5 0.013 0.288 [1]
31 n-Butane n-Decane 3 0.044 0.261 [1]
32 Methane Cyclohexane 6 0.235 0.392 [1]
33 Ethane Cyclohexane 6 0.138 0.862 [1]
34 Methane 2,2-Dimethylpropane 1 0.155 0.155 [1]
35 Ethane Propene 9 0.050 0.948 [1]
36 Ethane Benzene 6 0.124 0.935 [1]
37 Propane 2-Methylbutane 5 0.101 0.899 [1]
38 Propane 2,2-Dimethylbutane 5 0.081 0.847 [1]
39 Propane 2,3-Dimethylbutane 5 0.085 0.848 [1]
40 Propane 2-Methylpentane 5 0.081 0.850 [1]
41 Propane 3-Methylpentane 5 0.115 0.855 [1]
42 n-Hexane Acetylene 4 0.375 0.665 [1]
43 n-Hexane Toluene 3 0.300 0.634 [1]
44 Ethylene Propene 7 0.086 0.883 [1]
45 Benzene Ethylene 14 0.100 0.940 [1,26]
46 Benzene Naphthalene 11 0.099 0.682 [1]
47 Naphthalene Cyclohexane 5 0.460 0.785 [1]
48 Benzene Phenanthrene 5 0.106 0.291 [1]
49 Benzene Anthracene 4 0.048 0.103 [1]
50 Nitrogen Carbon dioxide 3 0.707 0.982 [1,27]
51 Oxygen Carbon dioxide 1 0.688 0.688 [1]
52 n-Perfluoroheptane Ethane 5 0.103 0.891 [1]
53 n-Perfluoroheptane Propane 5 0.094 0.809 [1]
54 n-Perfluoroheptane n-Butane 5 0.130 0.916 [1]
55 n-Perfluoroheptane n-Pentane 5 0.291 0.913 [1]
56 n-Perfluoroheptane n-Hexane 7 0.130 0.904 [1]
57 n-Perfluoroheptane n-Heptane 7 0.100 0.904 [1]
58 n-Perfluoroheptane n-Octane 3 0.054 0.475 [1]
59 n-Perfluoroheptane n-Nonane 5 0.132 0.843 [1]
60 Methane Hydrogen sulfide 3 0.450 0.791 [1]
61 Ethane Hydrogen sulfide 6 0.110 0.890 [1]
62 Ethane Carbon dioxide 2 0.573 0.579 [1]
63 Propane Hydrogen sulfide 7 0.163 0.898 [1]
64 Propane Carbon dioxide 3 0.407 0.795 [1]
65 n-Butane Carbon dioxide 8 0.173 0.875 [1,28]
66 n-Pentane Hydrogen sulfide 12 0.100 0.966 [1]
67 n-Decane Hydrogen sulfide 3 0.900 0.994 [1]
68 n-Decane Carbon dioxide 9 0.728 0.995 [1,29]
69 Ethylene Ethanol 5 0.425 0.825 [1]
70 Methanol Butan-1-ol 4 0.167 0.762 [1]
71 Butan-1-ol Butan-2-ol 3 0.236 0.779 [1]
72 Butan-1-ol Diethyl ether 4 0.131 0.744 [1]
73 Sulfur dioxide Dimethyl ether 4 0.401 0.777 [1]
74 Sulfur dioxide Methyl ethyl ether 5 0.272 0.785 [1]
75 Propane Sulfur hexafluoride 6 0.163 0.877 [1]
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