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Centralized monitoring generally involves all measured variables in one model. However, the existence of
variables without beneficial information may cause redundancy in the monitoring and degrade monitoring
performance. This paper proposes a performance-driven distributed monitoring scheme that incorporates kernel
principal analysis (KPCA) and Bayesian diagnosis system for large-scale nonlinear processes. First, a stochastic
optimization method is utilized to select a subset of variables that provide the best possible performance for
each fault and to decompose the process into several sub-blocks. Second, a KPCA model is established in each
block to deal with nonlinearity and generate fault signature evidence. Finally, a Bayesian fault diagnosis system
is established to identify the fault status of the entire process. Considering the significant calculation amount in
Bayesian diagnosis, optimal evidence source selection is performed to reduce the redundancy. Case studies on
the Tennessee Eastman benchmark process and a continuous stirred tank reactor process demonstrate the
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efficiency of the proposed scheme.
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1. Introduction

Modern chemical processes are usually characterized by large-scale
and complex correlations, and monitoring such plant-wide processes
has become an important issue [ 1-6]. Data-based, especially multivariate
statistical process monitoring (MSPM), methods are gaining increasing
attention because of advances in data gathering, transmitting, and pro-
cessing techniques [7-10]. Numerous MSPM methods, such as principal
component analysis (PCA) [11-14], partial least square [15-17], inde-
pendent component analysis [18-20], and Fisher discriminate analysis
[21-23], have been proposed to address various process characteristics,
and the efficiencies of these methods have been proven. However,
some problems still need to be addressed, such as (i) incorporating
MSPM to a large-scale process; (ii) dealing with process nonlinearity;
and (iii) performing fault diagnosis.

Nowadays, the number of measured variables in a plant-wide
process is usually large. Incorporating all measured variables in one
MSPM monitoring model is not appropriate for a large-scale process
and may degrade monitoring performance [24,25]. To reduce process
complexity and monitoring redundancy, a multi-block or distributed
monitoring scheme that divides the process into several local units
can be employed [3,5,15,25-27], in which process decomposition is a
key step. The influence of process decomposition on monitoring perfor-
mance has been analyzed in [25], and the detectability of a fault has
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been found to rely on both variable relations and fault characteristics.
Therefore, in data-based process decomposition, both variable correla-
tions and fault information should be taken into account. When fault
information is unavailable, the main concern is the correlations among
variables [5,26]; when fault information, i.e., data or model, is available,
a performance-driven process decomposition method can be employed
[25]. Ref. [25] established the theoretical foundation for data-driven
distributed monitoring and addressed the fault detection issue for linear
processes. Following the work in [25], this paper aims to extend the
distributed monitoring scheme to large-scale nonlinear processes and
to address both fault detection and diagnosis issues.

Aside from its large scale, a plant-wide process is usually character-
ized by nonlinearity; several approaches have been developed for
dealing with this nonlinearity. For instance, an auto-associative neural
network-based nonlinear PCA approach is proposed by Kramer [28],
and a nonlinear PCA based on principal curves and neural networks is
developed by Dong and McAvoy [29]. To avoid nonlinear optimization
in neural network-based nonlinear PCA methods, kernel PCA (KPCA)
has been proposed and extended intensively [30,31]. To employ KPCA
for monitoring large-scale processes, a mutual information-based
multiblock monitoring scheme has been proposed in [2]. This scheme
takes both linear correlations and nonlinear relations among variables
into account during process decomposition; however, without consid-
ering fault information, the optimal performance cannot be guaranteed.

Another issue in monitoring large-scale nonlinear processes is fault
diagnosis. In practice, some faults occur constantly or periodically, and
the data of these faults are stored in a historical database. The purpose
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of fault diagnosis is to assign the current online sample to the most
related historical fault class, which is essential for counteracting or
eliminating the fault [21,23,32]. Rather than improving the diagnosis
performance from the feature extraction aspect, Bayesian fault diagnosis
makes decisions on the fault status in a probabilistic manner. A Bayesian
diagnosis system that incorporates prior process knowledge is devel-
oped in [33], and a Bayesian control loop diagnosis framework is
established by Huang [34]. Following these two works, several studies
have been conducted, such as Refs. [35-38]. More recently, an optimal
principal component-based Bayesian fault diagnosis system has been
established in [39]. The work analyzed the influence of principal compo-
nent (PC) selection on the diagnosis performance, and it suggested
selecting the most efficient PCs to generate fault signature evidence.
Following the work in [39], this paper will introduce how an optimal
Bayesian diagnosis system can be designed in the distributed monitoring
problem of a large-scale nonlinear process.

The remainder of this article is structured as follows: First, the basics
of KPCA fault detection and Bayesian diagnosis are introduced briefly,
and some notations are defined. Second, the performance-driven
optimal design of distributed monitoring scheme that incorporates
KPCA and Bayesian diagnosis system is presented in detail. Then, the
proposed distributed monitoring scheme is applied on the Tennessee
Eastman (TE) benchmark process and a simulated continuous stirred
tank reactor (CSTR) process. Finally, conclusions are drawn.

2. Preliminaries

The basics of KPCA fault detection and Bayesian fault diagnosis are
introduced briefly. Some notations are defined.

2.1. KPCA-based fault detection

KPCA is one of the most widely used techniques for dealing with the
nonlinear process monitoring problem. Rather than decoupling variable
correlations in a nonlinear input space, KPCA finds a computationally
tractable solution through nonlinear mapping from the input space to
the feature space [30]. Let x,€R™,k=1,...,N (m is the number of
measured variables, and N is the number of samples) denote a set of
zero-mean data. Given a nonlinear function &(-), the covariance in a
feature space F can be expressed as [30,31]
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where Zgﬂd)(xk) = 0 is assumed. In the feature space, the covariance
matrix can be diagonalized by solving the eigenvalue problem as [30,31]
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where A\ >0 are eigenvalues, and v are eigenvectors. According to Eq. (1),
the right side of Eq. (2) becomes [30,31]
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where (-,-) denotes the dot product. This finding implies that
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solutions v with A#0 must lie in the span of &(x;), ... ,P(xy). Then,

Eq. (2) can be expressed as [30,31]
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forall k=1, ... ,N. Introducing an Nx N kernel matrix K by [K];;=Kjj=
((I)(x,»),(l)(xj)) ensures that the computing of ¢(-) can be avoided and
Eq. (4) can be expressed as [30,31]

ANKa = K’ (5)

where @ =|ay, ...,ap]". After some derivations, the PCs of a new sample
x can be extracted as [30,31]
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where k=1, ...,p, and p is the number of retained PCs. Two statistics

are constructed for monitoring the dominant space and residual space,
respectively, as [30,31]
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where n is the number of nonzero eigenvalues. The thresholds of the
statistics can be obtained based on Gaussian assumption or determined
by kernel density estimation. Here, Gaussian assumption is employed,
and details on the determination of the thresholds are given in [30,31].

2.2. Bayesian fault diagnosis

In a physical process, some monitors indicate the statuses of process
components, local units, or physical quantities. Occurrence of a fault will
generally cause some changes to the process, and these changes will be
reflected in the monitor readings. Bayesian diagnosis is used to identify
the underlying fault status according to the obtained monitor readings
and assign the current sample to the most related historical fault class.
In using Bayesian diagnosis, the following notations should be defined
[37].

Fault status f: A fault status f denotes the underlying status of a
process; for example, a fault status can be the normal operation state,
a ramp change in temperature, or a disturbance in pressure. An f can
take different values in accordance with fault statuses, and the set of
all G fault statuses can be denoted as f={fi, ...,fc}.

Evidence E: Evidence E functions as the input for the Bayesian
diagnosis system and is composed of a set of discrete values that
indicate the states of the considered physical properties that come
from the corresponding monitor readings. Each monitor reading can
be regarded as a source in the evidence, and an evidence set with r
sources can be denoted as E = {my,m, ...,m,}, where m; is the i-th source
that has g; discrete values. The evidence set with all possible evidence
values can be denoted as e={ey,es, ...,ex}, where e;E¢ is a specific

.
evidence and K = [] g;.
i=1

Historical evidence data D: The historical training evidence data D
refers to the evidence that come from each fault status collected in the
process history and can be denoted as D= {d',d?, ...,d""}, where Nj, is
the number of samples. The sample d' taken at time i consists of an
evidence vector e’ and the fault status f': d'={e',f'}. The samples in
the historical dataset are assumed to be independent.

Bayesian solution: Bayesian diagnosis is used to identify the underly-
ing fault status on the basis of the obtained evidence and historical
evidence data. Results can be achieved by calculating the posterior
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