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In this paper, a two-level independent component regression (ICR) model is developed for multivariate spectro-
scopic calibration. Compared to the traditionally used principal component regression and partial least squared
regression model, the ICR model is more efficient to extract high order statistical information from the spectra
data. To improve the calibration performance, an ensemble form of the ICR model is proposed. In the first level
of the method, various subspaces are constructed based on the independent component decomposition of the
original data space. Meanwhile, by defining a related index, the most important variables in each subspace are
selected for ICR modeling, which form the second level of the proposed method. A Bayesian inference strategy
is further developed for probabilistic combination of calibration results obtained from different subspaces. For
performance evaluation, two case studies are carried out on a benchmark spectra dataset.
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1. Introduction

In the past several decades, spectroscopic calibration modeling
has become an effective tool for fast and non-invasive analysis in
chemistry/biochemistry related areas, such as petrochemical and food
industries and pharmaceutical and biological sectors [1–5]. In order to
guarantee a high calibration performance for the spectroscopic device,
various chemometrics methods have been incorporated. Commonly
used ones include principal component regression (PCR), partial least
squares (PLS), artificial neural networks (ANN), support vector regres-
sion (SVR), Gaussian process regression (GPR), etc. [6–20]. Among all
those developed chemometrics modeling methods, the linear calibra-
tion model PCR and PLS may be two of the most widely used and
accepted ones, which are efficient to provide fast and linear relationship
analyses between the spectra and properties of the products.

Though successful studies have demonstrated the efficiency of PCR
and PLS based calibration methods, as Gustafsson pointed out, neither
of these two methods can generally recover a true underlying linear
latent model from the data [21]. In addition, PCR/PLS can only extract
the first and second order statistics from the data, which means higher
order statistical information has been ignored. For non-Gaussian data,
high order statistics are necessary for information extraction and
interpretation. As an emergent data analysis technique in recent years,
independent component analysis (ICA) aims to decompose the original
signals into different directions, which are independent to each other
[22]. The extracted component by the ICA model is assumed to be

mutually independent instead of merely uncorrelated. Through proba-
bility interpretation, independence is a much stronger condition than
uncorrelatedness, which can make use of higher order statistical
information. Compared to PCR/PLS, it has been demonstrated that
the ICA regression method (ICR) can recover the true underlying
sources much better, depending onwhich an improved statistical inter-
pretation of the data can be obtained. Recent works on ICA or ICA re-
gression (ICR) have been done for blind source signal separation,
image processing, process monitoring, spectra data analysis and quality
prediction [23–33].

However, most ICR model based spectroscopic calibration works
have been carried out on constructing a single model, no matter how
complicated the spectra data performed. This may cause unsatisfactory
performance, especially when the number of training data samples is
relatively small, compared to the number of spectra data variables. In-
spired by the idea of ensemble learning from the area of machine learn-
ing, the calibration performance could probably be improved through
constructing multiple regression models for the same purpose. Typical
ensemble learning strategies include bagging, random subspace, ran-
dom forest, etc. [34–40]. In this paper, the random subspace method is
employed and combined with ICR for model calibration purpose. The
main idea of the random subspacemethod is to build various individual
models based on different variable subsets which are randomly selected
from the original variables space. Then, the final calibration result is
obtained by combining the results of different individual models.
However, a critical shortcoming of this method is that the diversity
among different individual models cannot be well guaranteed through
a random selection manner, which is a quite important issue in the
ensemble learning method.
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To improve the calibration performance of the random subspace ICR
model, a two-level ICRmodel is developed in this paper. In thefirst level
of the model, an ICA model is constructed on the original spectra data.
Based on this model, various modeling directions can be determined,
which are independent with each other. The diversity property of the
random subspacemethod can be greatly improved if we build individu-
al models along those independent directions. For construction of those
subspaces, a related index is defined for variable selection in each sub-
space, which is based on the absolute values of the separating matrix
in the ICA model. In the second level, an ICR model can be developed
for each subspace. For online calibration purpose, an important issue
is how to combine the results from different individual models. While
one can resort to a simple average combination strategy, a more effec-
tive Bayesian based probabilistic combination strategy is proposed for
results combination in this paper.

The rest of this paper is organized as follows. In Section 2, the basic
ICR model is briefly introduced. Detailed demonstration of the two-
level ICR model is provided in Section 3, followed by illustrations
of two benchmark spectra data examples in the Section 4. Finally,
conclusions are made.

2. Independent component regression (ICR)

Based on the ICA modeling method, the ICR model can be built be-
tween the extracted independent components and quality variables.
In the ICA algorithm, it is assumed that the measured process variables
x ∈ Rm×1 can be expressed as linear combinations of r(≤m) unknown
independent components s ∈ Rr×1, the relationship between them is
given by [22]

x ¼ Asþ e ð1Þ

where A ∈ Rm×r is the mixing matrix, e ∈ Rm×1 is the residual vector.
The basic problem of ICA is to estimate the original component s and
themixingmatrixA from x. Therefore, the objective of ICA is to calculate
a separatingmatrixW so that the components of the reconstructed data
matrix s ̂ become as independent of each other as possible, given as

s ̂ ¼ Wx: ð2Þ

After the independent components have been estimated from the
process data, the linear regression can be carried out between two

datasets: the independent component dataset Ŝ ¼ ½ŝ1; s ̂2;⋯; s ̂n�T ∈ Rn�r

and the quality variable dataset Y=[y1,y2,⋯ ,yn]T ∈ Rn×p. Therefore,
the linear regression matrix can be calculated as

Q ¼ Ŝ
T
Ŝ

� �−1
Ŝ
T
Y: ð3Þ

If we denote the dataset of process variables as X=
[x1,x2, ⋯ ,xn]T∈Rn×m, and combine the two steps of ICR model-
ing procedures, the ICR regression matrix can be determined as

RICR ¼ Q TW: ð4Þ

3. Two-level ICR for multivariate calibration

Denote thewhole variable dataset asX ∈ Rn×m, wherem is thenum-
ber of process variables, and n is the sample number for each variable.
An initial ICA decomposition can be carried out on X, thus [22]

X ¼ ASþ E ð5Þ

whereA is themixingmatrix of the ICAmodel, S is the datamatrix of the
independent components, E is the residual matrix. The number of inde-
pendent components k can be determined by the negentropy method,

non-Gaussianity measurement, etc. Based on the independent behavior
of the extracted components, a subspace can be defined through each
independent component direction, which are orthogonal to each
other. Therefore, to build the ICR model in each subspace, the impor-
tance of each variable in different subspaces should be measured, de-
pending on which the most informational ones should be retained in
their corresponding subspace. To this end, an independent component
related index (RI) is defined as follows

RI i; jð Þ ¼ wij
�� ��

wi1j j þ⋯þ wij
�� ��þ⋯þ wimj j ð6Þ

where i=1, 2 , ⋯ , k , j=1, 2 , ⋯ , m,wij is the j-th element of the
i-th independent component direction in the separating matrix W.
Therefore, the larger the value of the j-th element, the more significant
contribution it has provided through the i-th independent component
direction. Based on this defined index, the importance values of differ-
ent process variables through each independent component direction
can be measured and ranked from the most important one to the least
important one. An appropriate number of variables can be selected
to form each subspace, depending on the selection scheme. The ICR
model-based subspaces can be represented as follows

X→

X1 ¼ X S1ð Þ→subspace #1
X2 ¼ X S2ð Þ→subspace #2
⋮
Xk ¼ X Skð Þ→subspace #k

8>><
>>: ð7Þ

where Si , i=1,2,⋯ ,k is the column vector, which related to each sub-
space along the corresponding IC direction. A diagram of the proposed
subspace modeling approach is given in Fig. 1.

3.1. ICR modeling in each subspace

Suppose the whole variable set has been divided into k sub-
spaces, and mb variables have been selected in each subspace,
where b=1,2,⋯ ,k, the corresponding dataset for each subspace can
be represented as {Xb}b=1,2, ⋯ ,k. Denote the quality variable dataset
as Y ∈ Rn×p, the subspace ICR model can be constructed as follows

Xb ¼ AbSb þ Eb ð8Þ

Q b ¼ STbSb
� �−1

STbYb: ð9Þ

Therefore, the regression form of the subspace ICR model can be
developed as

Yb ¼ Q T
b Ŝb ¼ Q T

bWbXb ¼ RICR;bXb: ð10Þ

3.2. Online calibration based on two-level ICR model

Based on the developed subspace ICR models, the property value of
the new spectra data can be calculated by combing the results obtained
in different subspaces. Therefore, when the newdata sample xnew∈Rm is
available, each subspace ICR prediction result is calculated in the first
step, given as

y ̂bnew ¼ RICR;b
� �Txnew SIbð Þ ð11Þ

where b=1,2,⋯ ,k, RICR ,b the regression matrix of the b-th subspace
ICR model, SIb represents the variable index of each subspace in the
original variable space. When all of the subspace prediction results
have been generated, the next step is to combine them in a certain
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