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Rubbermixing is a nonlinear batch process that lasts for very a short time (ca. 2–5min). However, the lack of on-
line sensors for quality variable (e.g., the Mooney viscosity) has become a main obstacle of controlling rubber
mixing accurately, automatically and optimally. This paper proposes a novel soft sensingmethod based onGauss-
ian process regression (GPR)models fortifiedwith both ensemble learning and just-in-time (JIT) learning, which
ensures precision and robustness at the same time. More specifically, thismethod first builds multiple input var-
iable sets from random local datasets, then uses the obtained input variable sets to establish local models and
send them to ensemble learning with Bayesian inference and finite mixture mechanism before making the
final prediction output. The superiority of the proposed method is demonstrated using an industrial rubber
mixing process.
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1. Introduction

Rubber mixing is the first and very crucial process in the rubber and
tire manufacturing industry. It is a typical nonlinear and time-varying
batch process, for which the accurate and reliable online measurements
of quality variables are critical for controlling, monitoring, optimizing
and stabilizing production. Mooney viscosity can indicate the molecular
weight of an elastomer and its viscoelastic behavior, and it is one of the
key end-use quality variables in rubber mixing [1,2]. However, it can
only be determined throughmanual analysis carried out offline in labora-
tories, which cannot be done until 4–6 h after rubbermixing,whereas the
mixing process of a batch run lasts merely for about 2–5min. This means
large amounts of rubber will be manufactured more or less blindly, i.e.,
without timely and accurate knowledge and control over the ongoing
production. Therefore, real-time estimation of the Mooney viscosity is
highly desired for optimal and uniform rubber product quality.

Nowadays, soft sensor technology has beenwidely used to determine
quality variables that are difficult to measure online [3–5]. Generally, soft
sensors are either model-driven or data-driven [6,7]. The former are
based on the chemical and physical principles underlying the process,
which understandably are normally unavailable for complex industrial
applications. In contrast, the latter are preferable because they mainly
rely on the operation data and require minimal process knowledge.

Thus we here focus on data-driven soft sensors. Multivariate statistical
techniques such as principle component regression (PCR) [8] and partial
least squares (PLS) [9] are well-established data-driven methods for soft
sensors, but they are essentially linear modeling techniques that cannot
handle process nonlinearity. Consequently, various machine learning
methods have been introduced to soft sensor applications, including arti-
ficial neural networks (ANN) [10,11], neuro-fuzzy systems [12], support
vector regression (SVR) [13], Gaussian process regression (GPR) [1,14],
as well as other kernel-based methods [15].

Data selection plays a crucial role in developing data-driven soft sen-
sors. In industrial applications, however, historical data collected for soft
sensor modeling cannot cover all possible states and conditions of the
process, and new process states may emerge when new data are sam-
pled. Moreover, the process characteristics vary constantly due to
equipment aging, raw material changes, catalyst deactivation, seasonal
changes, etc. As a result, a single rigidly defined model is unsuitable. To
account for such evolving behavior, various recursive strategies have
been proposed to build adaptive soft sensor models [16,17]. A
discounted-measurement recursive partial least squares modeling
method has been proposed in [2] to predict the Mooney viscosity in
rubber mixing, which can overcome the noise and multi-collinearity
in the original data. Nevertheless, recursive methods can only deal
with gradual changes in operation conditions and fail upon abrupt
changes in process characteristics. In addition, recursive strategies
tend to excessively adapt themodel when the process is operatedwith-
in narrow operating conditions. Another popular strategy is themoving
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windowmethod [18,19], which uses the latest samples within a sliding
window to adapt the model. The drawback, however, is that the old
samples that may contain useful information are continuously
discarded as time elapses.

To address the nonlinear and time-varying behavior of process simul-
taneously, local learning methods, inspired by the “divide and rule” phi-
losophy, have attracted growing interests in soft sensor applications.
Themost popular local learningmethods for soft sensor development in-
clude the just-in-time (JIT) learning and the ensemble learning. The JIT
learning framework has been proposed to achieve local optimization
and estimation, based on the principle that similar inputs should lead to
similar outputs [20].When estimation is requested, the JITmethod builds
a localmodel by selecting samplesmost similar to the query data, and the
model is discarded after itmakes the estimation. In thisway, the JITmeth-
od can handle both nonlinearity and time-varying characteristics. Cur-
rently, many similarity criteria have been developed for the sample
extraction in JIT learning [21–23]. Regarding JIT, locally weighted partial
least squares (LWPLS) and local kernel learning have been proven useful
in dealing with multimode and time-varying problems in industrial pro-
cess estimation [24]. Recently, Liu proposed a novel auto-switch GPR
(AGPR) soft sensing algorithm for multigrade processes in polymer and
fine industries, in which the posterior probabilities of the query data
with respect to the current state is evaluated and then the most suitable
model is selected for online prediction [25]. In this approach, JIT-GPR
modeling method was used to achieve the online estimation in the tran-
sient states while the offline built models are used during the steady
states. Nevertheless, a single localmodel by itself may fall short in captur-
ing all relevant characteristics of the process. Furthermore, because the
size and the similarity measure of the optimal local model are so diverse,
the JIT predictions are at times unstable. On the other hand, ensemble
learninghas beenusedwidely to improve the robustness of onlinepredic-
tions [1,14,26]. Under the ensemble learning framework, a series of local
datasets are built from the historical database, on which multiple local
models are built. The local datasets can be constructed in a number of
ways, such as bagging, boosting, random subspaces, fuzzy c-means clus-
tering, etc. [27,28]. For rubber mixing, a probabilistic ensemble Gaussian
process regression (GPR) modeling method has been developed to
allow accurate prediction of the Mooney viscosity [1].

Besides data selection, variable selection is yet another key consider-
ation in constructing soft sensor models. Commonly known variable se-
lection methods include absolute shrinkage and selection operator
(LASSO) [29], PLS with variable importance in projection (PLS-VIP), ge-
netic algorithm with PLS (GA-PLS), etc. It has been shown that the per-
formance of soft sensors can improve greatly when nonessential
variables are excluded [30,31]. For online prediction of the end-use
quality variables in batch processes, all samplings at different time in-
stants can be used as inputs of soft sensor models to estimate the target
variable at the end of a batch run. This means that lots of potential input
variables are available to predict a single output variable. Thus variable
selection is essential to achieve dimension reduction and redundant in-
formation removal, which aims to improve the estimation accuracy as
well as computational efficiency.

Regrettably, diversity of variable selectionwithin local learning frame-
work has rarely been explored. In fact, most local learning based soft sen-
sors simply employ one single input variable set and merely manipulate
samples by dividing historical data into local subsets. However, these
soft sensormethods cannot effectively capture the process characteristics.
In particular, because rubber mixing is a multimode batch process that
has constantly varying operation conditions (e.g., feed material, recipe,
etc.) and process characteristics, a fixed set of input variablesmay neglect
important features that are unique only to a subset of data and generate
redundancy from other data when they capture overlapping information.
Consequently, it is often difficult and even impossible to choose a fixed
and optimal set of process variables to provide the satisfactory prediction
results under all possible operation conditions. To address this issue, the
selection and combination of input variables for local learning should be

diverse enough to cover the process characteristics and contribute to
the accuracy of the eventual global output.

To address the above-mentioned issues, a novel soft sensor, referred
to as the ensemble just-in-time GPR (EJITGPR) model, is proposed in
this work to improve the performance of quality prediction in rubber
mixing process. This method is based on the integration of ensemble
learning and JIT learning. Different from traditional local learning
methods, diverse input variable sets arefirst customized by using the par-
tial mutual information (PMI) criterion and random resampling of histor-
ical data. Then a PLS analysis mechanism is applied to remove
unimportant or redundant local variable sets,which protects the diversity
of input variable sets without sacrificing the online prediction perfor-
mance. Furthermore, based on the selected input variable sets, multiple
local GPRmodels are built using JIT learning toprovide local prediction re-
sults, which include the local output estimation and prediction variance.
Finally, the Bayesian inference and the finite mixture mechanism are ap-
plied to consolidate the best local prediction results into the final output.
This novel EJITGPR method can handle both process nonlinearity and
time-varying behavior thanks to JIT learning, and it can also improve
the prediction robustness and accuracy through ensemble learning.

The remainder of this paper is organized as follows. Section 2 briefly
reviews Gaussian process regression (GPR), partial mutual information
(PMI), and the JIT learning framework. In Section 3, the proposed
EJITGPR soft sensing algorithm is described in detail. Section 4 demon-
strates the effectiveness of the EJITGPR method and its superiority
over traditional methods in an industrial batch rubber mixing case
study. Concluding remarks are drawn in Section 5.

2. Preliminaries

The GPR model, PMI criterion and JIT learning method are revisited
in this section.

2.1. Gaussian process regression

Over the past decade, Gaussian process regression has attractedmuch
attention in machine learning because it provides a principled, practical
and probabilistic approach for kernel learning machines [32]. Normally,
the Gaussian process includes a collection of random variables, any finite
number of which follows joint Gaussian distributions. With the dataset
D={X,y}={xi,yi}i=1

n , the regression model can be formulated as:

y ¼ f xð Þ þ ε ð1Þ

where f(·) represents an unknown regression function and ε denotes the
Gaussian noise with zero mean and variance σn

2. The Gaussian process is
completely specified by its mean functionm(x) and covariance function
C(x,x′) from the function space view, which are defined as follows:

m xð Þ ¼ E f xð Þ½ � ð2Þ

C x;x0ð Þ ¼ E f xð Þ−m xð Þð Þ f x0ð Þ−m x0ð Þð Þ½ � ð3Þ

Then the Gaussian process can be denoted as:

f xð Þ � GP m xð Þ;C x;x0ð Þð Þ ð4Þ

Usually, the data is normalized for notation simplicity, and then the
output observations follow a Gaussian distribution as:

y � GP 0;C x;x0ð Þð Þ ð5Þ

When a query input x⁎ comes in, the joint distribution of the training
outputs y and the test output y⁎ according to the prior is

y
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