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High-dimensional compositional data, multivariate observations carrying relative information, frequently con-
tain values below a detection limit (rounded zeros). We introduce new model-based procedures for replacing
these values with reasonable numbers, so that the completed data set is ready for use with statistical analysis
methods that rely on complete data, such as regression or classification with high-dimensional explanatory var-
iables. The procedures respect the geometry of compositional data and can be considered as alternatives to
existing methods. Simulations show that especially in high-dimensions, the proposed methods outperform
existing methods. Moreover, even for a large number of rounded zeros, the new methods lead to an improved
quality of the data, which is important for further analyses. The usefulness of the procedure is demonstrated
using a data example from metabolomics.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

High-dimensional data refer to a situation with many vari-
ables, often many more variables than observations. Such data
are often connected to genetics (as microarray data), but they
also arise in other fields that integrate chemometrical and biolog-
ical processes, such as in proteomics or metabolomics, as well as
in other natural sciences. In biological applications, due to high-
tech measurement devices, it is possible for each observation to
produce hundreds or even thousands of variables (potential bio-
markers) that should be further analyzed statistically. However,
frequently there are not enough samples at hand, such as when
a rare metabolomic disease is of primary interest. Consequently,
analysis of this kind of data requires specific statistical methods
that can cope with the situation of having more variables than
observations. Examples are procedures with various inference
goals (pattern recognition, calibration, clustering). They include
methods based on singular value decomposition or distance-based
methods, like partial least squares (PLS) regression, Lasso regression,
or hierarchical clustering [1].

An additional problem arises when the absolute values of the var-
iables (parts) are not the primary interest but rather their relative
values on a whole (which we refer to as compositional data, or com-
positions for short) [2,3]. This means that any possible rescaling of
the data does not alter the relevant information contained in ratios
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between the parts. As a particular case, a representation of the data
in proportions should not alter the results of a meaningful statistical
analysis. These properties are fulfilled by expressing the composi-
tions in orthonormal coordinates with respect to their specific geom-
etry, the Aitchison geometry on the simplex [4]. The above two
features, i.e. high dimensionality and compositional (or mixture) na-
ture of data, are also commonly shared by different types of high-
dimensional data in chemometrics; the corresponding methods for
compositional data were recently successfully applied in metabolo-
mics [5,6].

Unfortunately, none of the above-mentioned statistical methods
are able to process data that contain measurement artefacts such as
missing values (pure absence of the measurement in some entries)
or values below a detection limit (resulting as effect of rounding
errors; we also refer to rounded zeros). Especially values below a de-
tection limit frequently occur in natural sciences related to data from
chemometrics or from geochemistry. In metabolomics, for example,
rounded zeros usually arise from the preprocessing step, when
values below a certain threshold are set to zero in order to suppress
possible effects of inaccuracy of the measurement device. For this
reason, we consider the zeros to be the result of a rounding error
rather than of a pure absence of the molecule in the concrete vari-
able. Consequently, a proper imputation of rounded zeros must pre-
cede any further statistical analysis. Although in case of standard
multivariate data a comprehensive methodology exists [7], even ap-
plicable to the imputation of rounded zeros in high-dimensional data
[8,9], it fails in case of compositional data. Due to their specific na-
ture, each value to be imputed needs to be considered in a relative
sense, as ratios with the other parts in a composition. Methods for
the imputation of values below a detection limit are already
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developed and extensively used in practice [10-14]. However, most
of these methods fail in case of high-dimensional compositional
data sets. Finally, it is worth noting that in many cases, missing
values are mixed up with rounded zeros in chemometrics. Rounded
zeros are non-detects that result either from rounding effects
(rounding to zero) or as values below a certain detection limit (cen-
sored values), but it is rather common in statistics to denote by miss-
ing values unobserved uncensored entries.

The paper is structured as follows: Section 2 reviews the con-
struction of isometric log-ratio coordinates, as well as available
methods for the imputation of rounded zeros in compositional
data. A new method using a model-based procedure based on
partial least squares regression is proposed in Section 3, and
Section 4 provides a modification of this method using variable
selection. Advantages and shortcomings of the approaches are
analyzed using simulated data and a data set from metabolomics
(Section 5). Finally, the main features of the presented methods
and the comparison to existing methodology are summarized in
Section 6.

2. Available methods for rounded zeros imputation

The replacement of rounded zeros represents a constrained version
of missing values imputation. Namely, when x;; represents a rounded
zero for a particular observation i and a variable j, it holds that x;<t;,
where ¢;;is a threshold, i.e., typically the detection limit. For the purpose
of imputation, a regression-based algorithm was proposed in [14]
which, however, does not work in high-dimensional situations. The ini-
tialization of the iterative procedure is done by assigning 2/3 of the
detection limit to each of the affected data entries [10]. Note that for
more than approximately 10% rounded zeros, this might result in a se-
rious distortion of the multivariate data structure, even new outlying
observations might arise. Thus, a substantial improvement of the initial
imputation is necessary. The crucial point is to express the threshold
values in log-ratio coordinates [12,14]. This guarantees that the
estimated values are placed below the detection limit throughout the
estimation process.

2.1. Isometric log-ratio (ilr) coordinates

Because the new methods for rounded zero imputation proposed
later on in this paper are built on isometric log-ratio coordinates [15],
we provide more background on compositional data analysis in the
following.

The relative scale of compositional data as well as their inherent
principles like scale invariance are reflected by the Aitchison geometry
on the simplex, the sample space of representations of compositional
data [3]. The Aitchison geometry has properties of any Euclidean vector
space, thus it seems to be intuitive to find a proper orthonormal basis
with respect to this geometry and to express the compositions in the
corresponding coordinates, we refer to the isometric log-ratio (ilr) coor-
dinates (see [15]). Indeed, such a representation enables us to express
compositional data in the usual Euclidean real space, for which most
standard statistical methods are designed [16]. Let X=(x;, ...,Xp)
denote a compositional data matrix with n observations as rows and
D compositional parts as columns. A re-ordered composition with the
I-th part, I=1, ... ,D, moved to the first position is denoted by XV =
(X[,X], e X1 1,X14 1, - ,XD) = (XS”,X&'), veey f E+ Ty eee g)

A particular choice of orthonormal coordinates leads to D—1 new
coordinates ZP = (z{", ...,z%_ 1),
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division of vectors, columns of the compositional data matrix, is per-
formed element-wise. The inverse mapping of Z(" to the original (per-
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1) eXp( 1\3/51251)> 7

g _eXp< Z\/D 1<+1

")+ VD= ’(”>7 ()

VD—j+17
1 ,)
= ex
P Z V(D—j+1)(D—))
j=2,...,D—1. Consequently, the obtained compositions can be

represented as vectors with a constant sum constraint, such as pro-
portions or percentages. Due to the dimension of the Aitchison ge-
ometry (equal to D — 1) that reflects the nature of compositional
data, it is not possible to assign a coordinate to each of the original
compositional parts simultaneously. However, from its construc-
tion, the first coordinate z{" includes all relative information of
the part x; to the remaining parts, and can thus be interpreted in
terms of dominance of part x; with respect to the other parts in
the composition. Since this part x; does not occur in the other coor-
dinates z§”, ... ,z{)_ 1, these coordinates explain the remaining log-
ratios in the composntlon [17]. This choice of coordinates is of par-
ticular importance in the imputation context [18,14] as well as in
other applications (see, e.g., [19,6]).

2.2. Existing methodology

The available methods for rounded zeros imputation are collect-
ed in the R-package zCompositions [20]. We will briefly review
these methods, and employ them in the experimental part of the
paper.

2.2.1. Multiplicative replacement (mult repl)

This method imputes left-censored compositional values by a
given fraction of the corresponding detection limit. The default
fraction is 2/3 times the detection limit of a variable. Multiplicative
adjustment is applied in such a manner that the row-wise sums are
made equal to the original values including rounded zeros whenev-
er the data are in closed form, i.e. if they have to sum up to a
constant. In this case, the absolute values are not preserved.
Multiplicative replacement does not modify the original values
above the detection limit if the data are not presented in a closed
form.

2.2.2. Multiplicative log-normal replacement (mult lognorm)

[21] consider the univariate log-odds for the i-th variable (for values
above detection limit). They model the compositions using a multiplica-
tive logistic normal mixture for this purpose.

2.2.3. Multiplicative Kaplan-Meier smoothing spline replacement (mult
KMSS)

This method replaces left-censored rounded zeros by averag-
ing (geometric mean) random draws from a cubic smoothing
spline fit. This spline is fit to the inverse Kaplan-Meier empirical
cumulative distribution function to values below the correspond-
ing limit of detection or censoring threshold, and the values
below detection are replaced by the fitted values. Note that this
method works in a univariate manner, applied independently to
each compositional part containing values below detection.
However, afterwards multiplicative adjustment is applied to
preserve the multivariate compositional properties of the



Download English Version:

https://daneshyari.com/en/article/1180211

Download Persian Version:

https://daneshyari.com/article/1180211

Daneshyari.com


https://daneshyari.com/en/article/1180211
https://daneshyari.com/article/1180211
https://daneshyari.com

