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Abstract

Matching spectra is necessary for database searches, assessing the source of an unknown sample, structure elucidation, and classification of
spectra. A direct method of matching is to compare, point by point, two digitized spectra, the outcome being a parameter that quantifies the degree
of similarity or dissimilarity between the spectra. Examples studied here are correlation coefficient squared and Euclidean cosine squared, both
applied to the raw spectra and first-difference values of absorbance. It is shown that spectra do not fulfill the requirements for a normal statistical
interpretation of the correlation coefficient; in particular, they are not normally distributed variables. It is therefore not correct to use a Student’s -
test to calculate the probability of the null hypothesis that two spectra are not correlated on the basis of a correlation coefficient between them. We
have investigated the effect on the similarity indices of systematically changing the mean and standard deviation of a single Gaussian peak relative
to a reference Gaussian peak, of changing one peak, and of changing many peaks, in a simulated 10-peak spectrum. Squared Euclidean cosine is
least sensitive to changes and the first-difference methods are most sensitive to changes in mean and standard deviation of peaks. A shift of the
center of a peak has a greater effect on the indices than increases in peak width, but a decrease in peak width does lead to significant changes in the
indices. We recommend that if these indices are to be used to match spectra, appropriate windows should be chosen to avoid dilution by regions

with no significant change.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The comparison of two spectra is necessary for classifica-
tion of a spectrum [1], searching a database of spectra to
identify an unknown sample [2], to decide if two materials
come from a common source[3], in process control against the
target spectrum of an acceptable product [4], or to elucidate the
structure of a compound [5]. It is realized using a measure of
the similarity between the spectra, or conversely, the distance
of one spectrum from the other in some measurement space. If
the queried spectrum is in the database, a perfect match can be
achieved, but if only part of spectrum can be found, the result
might be a number of partially matched hits. In environmental
analysis, when material spilled in the environment is exposed
to weathering, chemical, physical and biological processes will
happen [6]. If so, the spectrum of a spill will not always make
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an exact match with the spectrum of its source, and so, to
correctly identify a spill for forensic applications requires some
allowed tolerance to be applied. In quality control of herbal
medicines, due to the changes of season, place of harvest, pre-
processing and the conditions of analyses, chromatographic
fingerprints of the same herbal medicine are not always the
same [7]. Therefore, any method of matching spectra will need
to distinguish between the same material that has been changed
and different materials with similar spectra.

Methods for comparing spectra can be divided into direct
and indirect methods. Direct matching methods use the spectral
data directly, and indirect matching methods use derived
information from spectra. The latter relies on identification of
selected peaks and the extraction of information from them and
has been used by human experts employing visual comparison
[8], old computer spectral databases or comparison by simple
mathematical calculations such as the measurement of ratios
[9]. Multivariate data analysis techniques [10], artificial neural
networks [11] and distance/angle [12] methods are direct
methods which treat digitized spectra directly without any prior
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identification of peaks. (Note that it is also possible to use
multivariate methods on peak area, or ratio data).

Vibrational and electronic spectra of mixtures can rarely be
deconvoluted and assigned to individual components in
contrast to the output of other methods such as nuclear
magnetic resonance (NMR), chromatography or mass spec-
trometry, in that individual molecules do not give a single, or a
small number of, identifiable peaks. Small informative peaks
and overlapped peaks in Fourier transform infrared (FTIR)
spectra are not easily identified by computer software and the
shape of a peak, which is important for comparison, is difficult
to describe accurately. These difficulties can be partially
avoided by using point-to-point matching methods because
all the data points in a spectrum are used. Similarity/distance
methods based on point-to-point matching also have the
distinct advantage, compared to pattern recognition techniques,
that they only require two spectra and not a set of spectra
belonging to different classes. Point-to-point matching is a
direct method in which equal-length vectors describing two
spectra (intensities, absorbances or detector response) are
compared point by point, and a single statistic calculated.
The Pearson correlation coefficient is an example of such a
similarity index.

In our previous work [13] on matching spectra of petroleum
oils, we have found that although different oils can exhibit very
different spectra, they can also be very similar. A spectrum of a
slightly weathered oil is almost identical to the spectrum of a
fresh sample, but it is possible that the difference between the
spectrum of a fresh oil and its weathered derivative is greater
than the difference between this spectrum and the spectrum of
another, highly similar, fresh oil. If we draw the distributions of
a similarity measure of such a situation, we see a broader
distribution of the spectral similarity of different oils, a
narrower distribution for spectra of the same oil but there is
often an overlap region leading to false positive or false
negative assignments. The success, or otherwise, of a matching
method, therefore, rests on its ability to discriminate subtle
differences in samples that are inherently similar. The task
becomes harder with real samples from the environment
because of weathering and introduction of interfering species
such as water.

Measures of similarity usually have a defined range, for
example, the Pearson’s correlation coefficient lies between — 1
and 1 or its square between 0 and 1. The minimum or
maximum similarity is not always met in the real world, nor is
the distribution of values normal. The meaning of the actual
value of a similarity index depends on the situation in which it
is applied. A correlation coefficient of 0.99 does not mean a
match in all situations. It is the analyst’s responsibility to
decide whether a pair of spectra matches according to the
actual situation. This cannot be done without a knowledge
(explicit or from experience) of the distribution of the index,
against which a particular result is judged.

An IR spectrum not only depends on the particular
functional groups, it also reflects the arrangement of these
functional groups within a molecule. An IR spectrum is thus, in
contrast to NMR or mass spectra, predominantly a property of

the whole molecule and not just the sum of the properties of its
constituents. The characteristic band of a functional group and
the shifts when it connects to different neighboring structures
have been described [14,15]. Not only is there not a complete
spectral library of the form of bands arising from a particular
group in all chemical environments, but also the simple
summation of the contributions of all the bands of functional
groups in a molecule does not give the real spectrum. It is
therefore not possible to predict the spectrum of a complex
environmental sample, even if the constituent compounds are
known. The only thing we can do is to investigate the effect of
the change of peaks of a spectrum itself. To deconvolute an IR
spectrum into Gaussian peaks is more difficult than to fit, for
example, an X-ray photoelectron spectroscopy (XPS) spec-
trum. It is impossible to start from a real spectrum and
decompose it into small Gaussian peaks. We have therefore
conducted the study reported here by simulating increasingly
complex spectra, which have been compared pairwise to yield
distributions of similarity indices. Starting from a two
simulated Gaussian peaks, we investigate the effect, on a
number of similarity measures, of differences in the position
and width. The study is extended to changes in a single peak
among a simulated spectrum of 10 random Gaussian peaks,
then to changing more peaks. Finally, we report the distribution
of similarity indices for real spectra, augmented by simulated
spectra derived from the variance of fast Fourier transform
(FFT) coefficients.

2. Theory
2.1. Similarity indices

A number of measures of similarity have been proposed that
can be classed as a Minkowski distance
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The spectra are described by vectors of equal length with
individual elements x;; and x,,;. The Euclidean distance is
given by m=2, and Manhattan (city block) distance is when
m=1. Statistical measures include the correlation coefficient,
and for approaches based on binary variables, the best known is
the Tanimoto index, which counts the proportion of points that
are mutually above or below a threshold [16]. Similarity indices
for use with infrared are discussed by Varmuza et al. [20].

Four point-to-point similarity indices are studied here:
squared correlation coefficient (Cor), squared first-difference
correlation coefficient (DCor), squared Euclidean cosine (Euc)
and squared first-difference Euclidean cosine (DEuc). Their
definitions can be found in Table 1.

It is seen that the difference between correlation coefficient
and Euclidean cosine is that the data is mean centered in the
calculation of correlation coefficient. For a symmetrical peak,
on taking the first difference, the mean of the spectrum is zero
and so DCor=DEuc. The first derivative of a spectrum is often
taken to remove the effect of a sloping baseline.



Download English Version:

https://daneshyari.com/en/article/1180224

Download Persian Version:

https://daneshyari.com/article/1180224

Daneshyari.com


https://daneshyari.com/en/article/1180224
https://daneshyari.com/article/1180224
https://daneshyari.com

