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Abstract

Matching spectra is necessary for database searches, assessing the source of an unknown sample, structure elucidation, and classification of

spectra. A direct method of matching is to compare, point by point, two digitized spectra, the outcome being a parameter that quantifies the degree

of similarity or dissimilarity between the spectra. Examples studied here are correlation coefficient squared and Euclidean cosine squared, both

applied to the raw spectra and first-difference values of absorbance. It is shown that spectra do not fulfill the requirements for a normal statistical

interpretation of the correlation coefficient; in particular, they are not normally distributed variables. It is therefore not correct to use a Student’s t-

test to calculate the probability of the null hypothesis that two spectra are not correlated on the basis of a correlation coefficient between them. We

have investigated the effect on the similarity indices of systematically changing the mean and standard deviation of a single Gaussian peak relative

to a reference Gaussian peak, of changing one peak, and of changing many peaks, in a simulated 10-peak spectrum. Squared Euclidean cosine is

least sensitive to changes and the first-difference methods are most sensitive to changes in mean and standard deviation of peaks. A shift of the

center of a peak has a greater effect on the indices than increases in peak width, but a decrease in peak width does lead to significant changes in the

indices. We recommend that if these indices are to be used to match spectra, appropriate windows should be chosen to avoid dilution by regions

with no significant change.
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1. Introduction

The comparison of two spectra is necessary for classifica-

tion of a spectrum [1], searching a database of spectra to

identify an unknown sample [2], to decide if two materials

come from a common source[3], in process control against the

target spectrum of an acceptable product [4], or to elucidate the

structure of a compound [5]. It is realized using a measure of

the similarity between the spectra, or conversely, the distance

of one spectrum from the other in some measurement space. If

the queried spectrum is in the database, a perfect match can be

achieved, but if only part of spectrum can be found, the result

might be a number of partially matched hits. In environmental

analysis, when material spilled in the environment is exposed

to weathering, chemical, physical and biological processes will

happen [6]. If so, the spectrum of a spill will not always make

an exact match with the spectrum of its source, and so, to

correctly identify a spill for forensic applications requires some

allowed tolerance to be applied. In quality control of herbal

medicines, due to the changes of season, place of harvest, pre-

processing and the conditions of analyses, chromatographic

fingerprints of the same herbal medicine are not always the

same [7]. Therefore, any method of matching spectra will need

to distinguish between the same material that has been changed

and different materials with similar spectra.

Methods for comparing spectra can be divided into direct

and indirect methods. Direct matching methods use the spectral

data directly, and indirect matching methods use derived

information from spectra. The latter relies on identification of

selected peaks and the extraction of information from them and

has been used by human experts employing visual comparison

[8], old computer spectral databases or comparison by simple

mathematical calculations such as the measurement of ratios

[9]. Multivariate data analysis techniques [10], artificial neural

networks [11] and distance/angle [12] methods are direct

methods which treat digitized spectra directly without any prior
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identification of peaks. (Note that it is also possible to use

multivariate methods on peak area, or ratio data).

Vibrational and electronic spectra of mixtures can rarely be

deconvoluted and assigned to individual components in

contrast to the output of other methods such as nuclear

magnetic resonance (NMR), chromatography or mass spec-

trometry, in that individual molecules do not give a single, or a

small number of, identifiable peaks. Small informative peaks

and overlapped peaks in Fourier transform infrared (FTIR)

spectra are not easily identified by computer software and the

shape of a peak, which is important for comparison, is difficult

to describe accurately. These difficulties can be partially

avoided by using point-to-point matching methods because

all the data points in a spectrum are used. Similarity/distance

methods based on point-to-point matching also have the

distinct advantage, compared to pattern recognition techniques,

that they only require two spectra and not a set of spectra

belonging to different classes. Point-to-point matching is a

direct method in which equal-length vectors describing two

spectra (intensities, absorbances or detector response) are

compared point by point, and a single statistic calculated.

The Pearson correlation coefficient is an example of such a

similarity index.

In our previous work [13] on matching spectra of petroleum

oils, we have found that although different oils can exhibit very

different spectra, they can also be very similar. A spectrum of a

slightly weathered oil is almost identical to the spectrum of a

fresh sample, but it is possible that the difference between the

spectrum of a fresh oil and its weathered derivative is greater

than the difference between this spectrum and the spectrum of

another, highly similar, fresh oil. If we draw the distributions of

a similarity measure of such a situation, we see a broader

distribution of the spectral similarity of different oils, a

narrower distribution for spectra of the same oil but there is

often an overlap region leading to false positive or false

negative assignments. The success, or otherwise, of a matching

method, therefore, rests on its ability to discriminate subtle

differences in samples that are inherently similar. The task

becomes harder with real samples from the environment

because of weathering and introduction of interfering species

such as water.

Measures of similarity usually have a defined range, for

example, the Pearson’s correlation coefficient lies between �1
and 1 or its square between 0 and 1. The minimum or

maximum similarity is not always met in the real world, nor is

the distribution of values normal. The meaning of the actual

value of a similarity index depends on the situation in which it

is applied. A correlation coefficient of 0.99 does not mean a

match in all situations. It is the analyst’s responsibility to

decide whether a pair of spectra matches according to the

actual situation. This cannot be done without a knowledge

(explicit or from experience) of the distribution of the index,

against which a particular result is judged.

An IR spectrum not only depends on the particular

functional groups, it also reflects the arrangement of these

functional groups within a molecule. An IR spectrum is thus, in

contrast to NMR or mass spectra, predominantly a property of

the whole molecule and not just the sum of the properties of its

constituents. The characteristic band of a functional group and

the shifts when it connects to different neighboring structures

have been described [14,15]. Not only is there not a complete

spectral library of the form of bands arising from a particular

group in all chemical environments, but also the simple

summation of the contributions of all the bands of functional

groups in a molecule does not give the real spectrum. It is

therefore not possible to predict the spectrum of a complex

environmental sample, even if the constituent compounds are

known. The only thing we can do is to investigate the effect of

the change of peaks of a spectrum itself. To deconvolute an IR

spectrum into Gaussian peaks is more difficult than to fit, for

example, an X-ray photoelectron spectroscopy (XPS) spec-

trum. It is impossible to start from a real spectrum and

decompose it into small Gaussian peaks. We have therefore

conducted the study reported here by simulating increasingly

complex spectra, which have been compared pairwise to yield

distributions of similarity indices. Starting from a two

simulated Gaussian peaks, we investigate the effect, on a

number of similarity measures, of differences in the position

and width. The study is extended to changes in a single peak

among a simulated spectrum of 10 random Gaussian peaks,

then to changing more peaks. Finally, we report the distribution

of similarity indices for real spectra, augmented by simulated

spectra derived from the variance of fast Fourier transform

(FFT) coefficients.

2. Theory

2.1. Similarity indices

A number of measures of similarity have been proposed that

can be classed as a Minkowski distance

D1;2 ¼
X
i

jx1;i � x2;ijm
 !1=m

: ð1Þ

The spectra are described by vectors of equal length with

individual elements x1,i and x2,i. The Euclidean distance is

given by m =2, and Manhattan (city block) distance is when

m =1. Statistical measures include the correlation coefficient,

and for approaches based on binary variables, the best known is

the Tanimoto index, which counts the proportion of points that

are mutually above or below a threshold [16]. Similarity indices

for use with infrared are discussed by Varmuza et al. [20].

Four point-to-point similarity indices are studied here:

squared correlation coefficient (Cor), squared first-difference

correlation coefficient (DCor), squared Euclidean cosine (Euc)

and squared first-difference Euclidean cosine (DEuc). Their

definitions can be found in Table 1.

It is seen that the difference between correlation coefficient

and Euclidean cosine is that the data is mean centered in the

calculation of correlation coefficient. For a symmetrical peak,

on taking the first difference, the mean of the spectrum is zero

and so DCor=DEuc. The first derivative of a spectrum is often

taken to remove the effect of a sloping baseline.
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