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Abstract

Data fitting is an important tool for the analysis of chemical processes. Limitations in the traditional fitting programs require strict control of

external parameters such as temperature, pH, etc. Recent developments in fitting programs combine the analysis of non-ideal data with the global

analysis of several different measurements. There are several advantages, the methods circumvent the necessity of external control of these

parameters (thermostatting, buffering), they simplify experimental design, and they deliver additional information such as activation parameters

and reaction enthalpies. Several practical examples and applications are given.
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1. Introduction

Data fitting is an old and very well-established tool for the

analysis of chemical processes [1]. Before the advent of

inexpensive computing power, linear relationships were Ffitted_
with ruler and graph paper. Nonlinear relationships had to be

linearised in some appropriate way. Subsequent analysis

involved a manual straight-line fit and slope and intercept

were interpreted according to the linearisation used. While it is

possible to computerise this approach, it is not adequate at all.

Error analysis is seriously hampered by the distortions imposed

by the linearisation function used. Nonlinear least-squares

fitting is superior as there are no distortions of the noise

structure of the data. Computer programs for basic nonlinear

least-squares fitting are readily available, e.g. solver in Excel or

similar functions in Matlab, MathCAD, Maple, etc.

Modelling the process under investigation is the core of any

fitting algorithm. In this context, we understand by modelling

the quantitative mathematical description of the process.

Generally, this means calculating the concentrations of all

relevant chemical species as a function of the independent

variable such as time in kinetics and chromatography or added

reagent in equilibrium investigations. Models are often based on

the law of mass action. Until very recently, in order to be able to

model the data it has been essential to ensure ideal behaviour, i.e.

temperature, ionic strength, pH, etc., have to be kept constant.

Under such ideal conditions and provided the process under

investigation is relatively simple, there are often analytical

solutions for the equations describing the process. For more

complex processes, standard numerical methods are available,

provided they still adhere to ideal behaviour. Otherwise, the

computations are significantly more complicated and methods

for the numerical analyses only appeared very recently [2–6].

If secondary processes such as the temperature dependence of

a chemical reaction are to be investigated, the traditional

approach has been to determine the rate at several fixed

temperatures and a secondary analysis of the individual results

is performed, based on the Arrhenius or Eyring equations [7].

Similarly, analyses of pH dependences result in the understand-

ing of the protonation equilibria and their influences on the

process under investigation [8]. Such investigations are

performed by acquiring data at a series of fixed (buffered) pH

values, followed by a secondary analysis of the pH dependence

of the primary constants determined at each pH. Another

comparable task is to extrapolate to zero ionic strength to yield

thermodynamically properly defined parameters. This requires

the analysis of a series of data acquired at different, constant
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ionic strengths, followed by a secondary analysis based on one

of the several approximations for the activity coefficients as a

function of the ionic strength [8].

Such investigations are expensive and require careful

planning, in particular to properly take into account the

limitations of the external control (pH buffers, thermostatting,

etc.).

Industrially relevant processes are often radically different

from academic investigations in many respects: conditions are

highly non-ideal as processes have to be performed on a large

scale with no or incomplete thermostatting, in highly concen-

trated or even neat reagents due to cost and environmental

problems related to solvent disposal. Incomplete and slow

mixing is an additional problem in large reactors, this aspect is

not discussed in this contribution. Model-based analyses of

such data based on ideal behaviour are not reliable.

An alternative to modelling analyses of such non-ideal

processes is to apply model-free analysis methods such as EFA

[9], ITTFA [10], ALS [11] and similar approaches. There are

several examples of successful application [3,12]; however,

these methods tend to suffer from a lack of robustness and from

inherent rotational ambiguities [13]. Nevertheless, these

methods can deliver valuable initial insight and can guide the

researcher in the process of finding the correct model.

In our research laboratories, we have been developing

alternative paths to address the difficulties encountered in the

modelling of non-ideal data: rather than imposing external

control to enforce ideal behaviour, we enhanced the modelling

algorithms to encompass the non-ideal behaviour. Temperature

changes [2,3], pH changes [5], changes in ionic strength [6],

etc. during the process, are modelled. Initially, applications

have been restricted to academic investigations but recently we

have started to exploit these capabilities for the investigation of

industrially relevant processes [4]. In this contribution, we

present the basic mathematical concepts required for the

analysis of such non-ideal data sets. We will also present

examples of applications on recent chemical investigations.

2. Nonlinear data fitting

In order to explain the methodology of analysing data sets of

the complexity described above, we need to recapitulate the

principles of nonlinear least squares fitting. The task is to

determine the best set of parameters for a given measurement

and a pre-defined model. The quality of the fit is a function of

the data, the model and the parameters:

quality of fit ¼ f Data; Model; Parametersð Þ: ð1Þ

For statistical and computational reasons, the quality of the

fit is usually defined as the sum over all the squares (ssq) of the

deviations between the measured data and their computed,

modelled representation.

The first step is the establishment of the correct model, e.g.

the chemical reaction scheme in a kinetic investigation or the

expected equilibrium species in equilibrium studies. This is

generally the most difficult task and requires the knowledge and

experience of the researcher. Here, model-free methods such as

EFA and or ALS can play a very useful role as the results of these

methods can guide the investigator towards the correct model.

The objective of the present contribution, however, is the

description of model-based fitting procedures and thus we will

assume the correct model has been determined.

We will start with the description of multi-wavelength

absorption data, as this is by far the most commonly used data

type for the investigation of chemical processes. Please note

that this includes the UV–VIS as well as the near and mid-

infrared wavelength ranges. Absorption data are governed by

Beer–Lambert’s law and as a consequence measurements of

this kind are best described by a matrix equation [14]

Y ¼ CA þ R ð2Þ

where Y is a matrix, the rows of which are formed by the

absorption spectra measured as a function of the progress of the

process.1 The columns of Y are the absorption traces measured

at the different wavelengths. According to Beer–Lambert’s

law, this matrix can be decomposed into the product of a matrix

C containing, column wise, the concentration profiles of the

absorbing species and a matrix A containing, row wise, their

molar absorptivities. The matrix R is a collection of the

residuals, the difference between the measurement Y and its

calculated representation CA.

The task is to determine that set of parameters for which the

sum over all the squares of the elements of the matrix R of

residuals is minimal [1].

ssq ¼
XX

R2
i;j: ð3Þ

Given the model and the measurement, the sum of squares is

a function of the parameters to be fitted. Initially, this number

of parameters seems to be very large as it includes the

nonlinear parameters (e.g. rate or equilibrium constants), which

define the matrix C and the large number of molar absorptiv-

ities which form the matrix A. Thus, for spectral series taken at

many wavelengths the number of parameters to be fitted can be

very high. It is of utmost importance to recognize that the

molar absorptivities are linear parameters, which can be

effectively eliminated from the list of parameters that need to

be fitted iteratively. This is described elsewhere [14,15] and we

will not further pursue this aspect here. Summarising, given the

model and the measurement Y, Eqs. (1) and (3) can be

combined and written as

ssq ¼ f kð Þ ð4Þ

where k is the vector of nonlinear parameters, as defined by the

chosen model.

Any method that performs this minimisation task can be

applied. The simplex algorithm is probably the most straight-

forward one; it suffers, however, from very slow progress for

even modest numbers of parameters. More advanced fitting

algorithms such as the one used in Fsolver_ in Excel tend to

outperform simplex based algorithms. We prefer the Newton–

1 Note, we use upper case bold characters for matrices, lower case bold

characters for vectors and italic characters for scalars.
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