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Spectrophotometric quantitation of formazan in tetrazolium-based nanoparticle (NP) toxicity assay requires a
robust calibration model immune to optical interference. For the first time, variant of partial least squares
(PLS) regression models, such as, full-spectrum (250–700 nm) PLS, interval PLS (iPLS), backward interval PLS
(biPLS), and synergy interval PLS (siPLS) models have been adopted for formazan quantitation. Models were
evaluated based on root mean square error of cross-validation (RMSECV), and prediction (RMSEP). The spectral
variables in optimal iPLS, biPLS and siPLSmodels, aswell as variables retained above a selection frequency thresh-
old (for all intervals), were further refined in a genetic algorithm (GA). The results suggest that the optimal biPLS
(140 variables, 5 LVs, RMSECV: 0.4438, RMSEP: 0.2936) and siPLS (88 variables, 5 LVs, RMSECV: 0.4401, RMSEP:
0.316) models were superior either to the full-spectrum PLS (4 LVs, RMSECV: 0.9674, RMSEP: 0.4618) or
traditional single wavelength calibration (414 nm, RMSECV: 2.0864, RMSEP: 2.1628). Minimum RMSEP
(0.2976) was observed when GA was performed on spectral variables retained (above a threshold frequency)
from the cumulative frequency distribution of all siPLSmodels. Finally, applicability of the selected PLS regression
models in real NP toxicity assay is demonstrated.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The extraordinary physicochemical properties of different nanopar-
ticles (NPs) have driven their ever increasing applications ranging from
catalysis, sensing, medical and environmental applications [1–3]. With
the growing use of NPs, an understanding of their potential health
hazards and ecological impact has become equally important [4,5].
Various cell viability-based in vitro cytotoxicity assays for NPs have
been adopted in recent studies, where tetrazolium dye is enzymatically
reduced to coloured formazan, presumably in proportion to the number
of viable cells [6,7]. The produced formazan is solubilised in appropriate
solvents and measured using a spectrophotometer at wavelengths
usually between 450 and 600 nm.

Although the tetrazolium-based toxicity assay has been employed
for a number of metal oxide NPs, the detection conditions described in
the literature vary [8]. In addition, the intrinsic optical absorbance of
NPs has been shown to interfere with spectroscopic measurements
generating confounding or conflicting data [9–11].The influence of NPs
on optical detection cannot be estimated in priori, which varies between
samples depending on the composition [12]. Background-corrected
single wavelength absorption of formazan can have little analytical

value. In such case where corrections need to bemade from the sample
measurement itself, multivariate calibration methods such partial least
squares (PLS) regressions provide excellent selectivity and prediction
accuracywithout requiring information on interfering analytes [13–16].

However, a full-spectrum PLS regression model may not be appro-
priate as a dimensionally reduced model with fewer selected variables
would have better interpretation and prediction accuracy [17]. For
local regression of spectral data, interval PLS (iPLS) is used to build PLS
models on non-overlapping subintervals (often with different window
sizes) on the spectrum to locate the optimum [18]. Synergy interval
PLS (siPLS) with all possible combinations of intervals, or backward
interval PLS (biPLS) with sequential elimination of intervals offers
significant improvements [19,20]. However, the subintervals retained
in biPLS or siPLS models may still contain much uninformative spectral
variables. In the past decade, genetic algorithm-PLS (GA-PLS) has
gained significant attention as a variable selection tool, which can be
tuned to select variables from the full-spectrum regions as well as
from spectral subintervals [21–24]. However, the numerous variables
in the search domain reduce the capability of GA to find an optimal
model, and number of variables can be reduced by applying the average
of the signal intensities on a selected window size [22], or by using iPLS
algorithm prior to GA implementation [19]. Each of the approaches has
its own benefits and certain limitations, such that a generalization may
not always be evident [25]. Variable selection methods find a ‘good’ set
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of variables rather than the ‘optimal’ and the applicability of these
methods may be subjective [26].

In the present work, an interval-based PLS model is adopted for the
spectrophotometric quantitation of formazan in iron oxide NP toxicity
assay. The selected spectral regions from those interval-based models
were processed inGA for further simplification,where their performance
was assessed on the basis of the rootmean square error (RMSE) of cross-
validation (RMSECV), and prediction (RMSEP).

2. Materials and methods

2.1. Reagents and nanoparticle (NP) preparations

The iron oxide NPs were synthesised by the co-precipitation of
ferrous and ferric ions in sodium hydroxide solution. The iron oxide
NPswere subsequently coatedwith Al(OH)3. The details for the prepara-
tion of the coated NPs and their characterization can be found elsewhere
[27]. The functionalised iron oxide NP preparation (2 g/L in distilled
water) was ultrasonically dispersed prior to its use. Other reagents,
such as 2,3,5 triphenyl tetrazolium chloride (TTC), 1,3,5 triphenyl tetra-
zolium formazan (TPF), glucose, and 1,4-dioxane were obtained from
Sigma Aldrich Chemical (Seoul, Korea). Concentrated hydrochloric acid
(35–37%) was from Samchun Chemicals (Seoul, Korea).

2.2. Formazan calibration and nanoparticle (NP) toxicity assay

2.2.1. Formazan calibration sets
The formazan calibration sets were designed to mimic the composi-

tion of actual toxicity assay. Escherichia coli (ATCC 25922), the test
microorganism in actual toxicity assay, was aerobically grown on sterile
nutrient broth medium to an optical density of 0.73 (600 nm), centri-
fuged at 3500 × g for 15 min, and re-dispersed in distilled water.
About 250 μL of the cell suspension was transferred into sets of 1.5 mL
micro-centrifuge tubes. To each of the tubes, 50 μL of filter-sterilised
glucose solution (1% w/v), 25–245 μL formazan solution (192 mg/L
stock in 1,4 dioxane), 10–110 μL of TTC solution (336 mg/L stock), and
varying amounts of NP suspensions (25, 50, 75, 100, or 125 μL from
2 g/L stock) were added (Table 1). Reaction volumes were adjusted to
435 μL with distilled water, the contents were mixed by vortexing,
and finally 25 μL concentrated hydrochloric acid and 0.5 mL of 1,4-
dioxane were added. This hydrochloric acid addition is not important
for calibration samples, but in real toxicity assay it helps to release
and dissolve intracellular formazan. The tubes were centrifuged at
3500 × g for 15 min, and the supernatants were collected for UV–Vis
absorbance measurements.

2.2.2. Nanoparticle NP toxicity assay
NP toxicity assay was conducted in sets of 1.5 mL micro-centrifuge

tubes. Cell suspension and glucose stock solution were added as
described earlier for formazan calibration sets. Varying amounts of NP
suspensions (25, 50, 75, 100, or 125 μL from 2 g/L stock) and 10 μL of
TTC solution (5376 mg/L stock) were added to each of the tubes. The
chosen TTC concentration ensured that the reduced formazan would
be inside the concentration range in calibration sets, even when 100%
TTC is microbially reduced. Reaction volumes were adjusted to 435 μL

with distilled water, mixed by vortexing and incubated under dark at
25 °C for 45min. Finally, formazanwas extractedwith 25 μL concentrated
hydrochloric acid and 0.5 mL of 1,4-dioxane. The UV–Vis absorbance
spectra of sample supernatants were recorded between 250 and 700 nm.

2.3. Spectral data

The blank corrected UV–Vis absorbance of the supernatants for all
samples was recorded between 250 and 700 nm at an interval of 1 nm
(451 data points) using 1.0 cm path length cells. The independent
variable matrix consisted of the assembly of spectral data of each
sample as a row vector (XN×451) and the formazan concentration was
utilised as the dependent variable (YN×1). A test set (N = 10) and
training set (N = 35) samples were selected by the Kennard–Stone
algorithm [28]. The X matrix and Y vector were auto-scaled prior to
PLS regression.

2.4. Model cross-validation and quality parameters

A PLS regression model extracts a number of uncorrelated latent
variables (LVs) from measurements of inter-correlated variables to
maximize the covariance between the X and Y data [29–31].To select
the optimal number of LVs to be included, cross-validation was
performed with five deletion groups created by taking every fifth
sample from the concentration-sorted data matrix. Concentrations of
samples from each deletion group were then validated against the
model created with the remaining subsets of data. The process was
repeated until each of the subsets was used exactly once as the valida-
tion data [32]. The number of LVs to be retained for a parsimonious
model was determined with F statistical test, where the predicted
error sum of squares (PRESS) value at the minimum is compared with
PRESS values for all previous LVs. The number of LVs for the first
PRESS values whose F-ratio probability drops below 0.90 was retained
[31,33].

PLS model performances are quantitatively defined in terms of
regression coefficient of CV (Q2), RMSE of cross-validation (RMSECV),
and RMSE of prediction (RMSEP) as follows:

Q2 ¼ 1−

Xn

i¼1
yi−~yið Þ2Xn

i¼1
yi−yið Þ2

ð1Þ

RMSECV=P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
yi−~yið Þ2
n

s
ð2Þ

where n is the number of samples in the calibration (or prediction) set,
yi and ~yi are respectively the known and cross-validated (or prediction)
estimate of ith sample, and yi is the average of n observations.

2.5. Implementation of iPLS, biPLS, siPLS and GA-PLS strategy

2.5.1. Formulation of interval-based PLS models
For all interval-based models, the full-spectrum region is divided

into 10, 11,…, 23, 25, 26, 28, 30, 32, and 34 intervals (total of 20 different
cases, starting from about 45 variables/window to 14 variables/
window). The framework for iPLS, biPLS and siPLS model processing in
GA is schematically shown in Fig. 1. For a given interval number, iPLS
models are computed on each non-overlapping subintervals and the
model with minimum RMSECV is retained. The siPLS and biPLS models
are based on forward selection and backward elimination of subinter-
vals, respectively [20]. In siPLS, up to four subinterval combinations
are considered while building a model. Starting from full-spectrum
models, the biPLS approach eliminates one subinterval at a time
whose removal results in the lowest RMSECV [19]. In this study, back-
ward elimination of subintervals is continued without any constrain
(e.g., retaining a minimum number of variables). The whole process is

Table 1
Summary of the different calibration sets showing the number of samples (N), minimum
(Min), maximum (Max), and mean of TTC or TTC-formazan and NP concentration.

Sets N Assay constituents and their concentration (mg/L)a

TTC-formazan TTC NPs

Min Max Mean Min Max Mean Min Max Mean

Calibration or
validation

45 5 49 27 3.5 38.5 21 52.08 260.41 156.25

a Basedonfinal assaymixture (960 μL:460 μL of aqueous phase and500 μL of 1,4 dioxane).
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