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A B S T R A C T

This paper tested various regression models (PLS, Ridge, Lasso, and sparse group Lasso) to select the
appropriate fluorescence wavelengths/variables in excitation–emission matrices (EEMs) to improve the
prediction of food identities. A framework using sparse models (the Lasso and sparse group Lasso) was
proposed and compared with the conventional models. These sparse regression techniques can simultane-
ously achieve the ideal design of the estimator and select the most effective feature-related wavelengths.
The experimental results showed that the proposed framework provided high prediction accuracy in select-
ing variables for accurate prediction of fish freshness and meat safety. Specifically, in case of predicting
fish freshness, the sparse group Lasso regression had a determination coefficient R2 of 0.790 with 493 EEM
variables while the standard PLS regression had R2 of 0.748 using all 1054 EEM variables.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The excitation–emission matrix (EEM, also called a fluores-
cence fingerprint) is an arranged fluorescence spectrum of emission
lights stimulated by lights with various excitation wavelengths [1].
Because the EEM implicates the physical and chemical properties
of objects [1], it has been widely used for nondestructive mea-
surement for various food properties [2–4]. Predicting a property
of a target object with its EEM is considered to be a regression
problem [5]. In such a problem, the explained variables are the flu-
orescence spectrum in the EEM of the target. The response variable
is the desired property of the object to be predicted. Similar to usual
regression problems, the real property and the corresponding EEM
spectra of the training samples are measured to design an estima-
tor (model) [5]. The model is designed in such a way that the model
utilizes the explained variables to accurately predict the response
variables of the samples [6]. In many cases, methods based on least
squares such as the partial least squares (PLS) model [7] have been
widely used. The EEMs of new samples (testing set) were used to
predict their actual property by using the designed model.

In practice, the measurement of the EEMs provides a rapid quality
monitoring of mass products [8,9]. To reduce the measurement time,
the number of wavelengths of the excitation and emission lights
should be reduced. However, the prediction with the less number
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of wavelengths could influence the accuracy of prediction in some
circumstances [10]. A good variable selection technique cannot only
capture variables that are most specifically related to the property
on interest, but can also exclude regions affected by other sources of
variation, leading to the enhancement of the model’s robustness [11].
In reality, there is no standard method for wavelength selection
because it is difficult to answer which algorithm (wavelength selec-
tion approach) is suitable for particular kind of data [12]. The choice
of particular method depends on the nature of the problem, size of
the data set, ease of implementation, and economic feasibility [13].
For instance, a method for wavelength selection based on grid-search
has been proposed [10]. Because the method requires calculating
the prediction accuracy for all wavelength candidates, the computa-
tional cost of the method is extremely large. Moreover, the number
of the best wavelength candidates increases explosively as the size
of the EEM increases. Therefore, development of reliable methods for
rapid selection of wavelengths is a crucial issue to promote the use
of nondestructive measurements using fluorescence spectra.

This paper proposes a new framework for selecting the best vari-
ables in EEM spectra. The discussed optimization problem can be
considered to be a problem of finding sparse components in the
EEMs related to the target property [14,15]. Therefore, models of
sparse regression were applied to this problem. More specifically,
the Lasso [14] and group Lasso [16,17] models were evaluated in the
paper. The Lasso regression assumes that most of the weight coef-
ficients for the explained variables become zero [15]. This means
that measuring the fluorescence intensities corresponding to zero
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coefficients is not needed to estimate the properties of new sam-
ples. Moreover, the group Lasso regression with sets of groups in
which single excitation/emission wavelength belongs to the same
group was proposed. The group Lasso works in such a way that all
of the weight coefficients belonging to the same group are zero.
This model can control the number of the groups, that is, the num-
ber of the excitation/emission wavelengths. Therefore, the estimator
can be designed flexibly. For example, if an estimator as a hard-
ware device [12,18,19] was designed, the group Lasso can control the
number of filters needed to generate the excitation lights with nar-
row bandwidths taking economical cost and the number of the times
for measurements into consideration. Additionally, the wavelength
selection using the group Lasso can be efficiently applied to design
the optical filters for a rapid measurement device [20]. The new fea-
ture brought by the proposed group set is called wavelength-wise
variable selection in this paper.

The objectives of this paper were as follows:

• Developing a framework using sparse regression in the predic-
tion problem using EEMs to provide efficient variable (wave-
length) selection;

• testing the framework in food safety estimation as,

– counts of viable bacteria on the surface of porcine meats, and
– freshness condition of frozen fishes estimated by K-value;

and
• discussing the efficiency of the sparse regression techniques in

terms of the prediction accuracy, the number of the selected
variables, efficiency of parameter tuning, and flexibility in the
design of the estimator.

2. Regression models

For the prediction of a certain property of the target objects
using their corresponding EEM spectra, the following regression
models were tested. Additionally, Section 2.7 introduces methods
for the variable selection combined with a regression technique. In
this study, the explained variables (x1, x2, . . . , xN) are the excitation–
emission wavelengths in EEM spectra at which the fluorescence
intensities were registered and the response variable (y) is either the
count of bacterial colonies in meat or K-value of fish freshness.

2.1. Formulation of linear regression

Linear regression [5] is a problem of predicting a response vari-
able y ∈ R from explained variables {xn ∈ R}N

n=1 by

ŷ = w0 + w1x1 + w2x2 + · · · + wNxN = w�x̃, (1)

where ŷ is a predicted value of y, x̃ is the vector of the explained
variables defined by

x̃ = [1, x1, x2, . . . , xN]� ∈ R
N+1, (2)

and w is the vector of the weight coefficients defined by

w = [w0, w1, . . . , wN]� ∈ R
N+1. (3)

In this problem, the weight coefficients {wn}N
n=0 that can accu-

rately predict y are numerically determined.

2.2. Least squares regression

The least squares error is one of the loss functions to design the
coefficients from observed samples [5]. Let {xm ∈ R

N , ym ∈ R}M
m=1

be the M pairs of samples of the explained variables and response
variable. The least squares method finds the coefficients w that
minimizes the cost function [21]:

J(w) =
M∑

m=1

(
ym − w�x̃m

)2, (4)

where x̃m =
[
1, x�

m
]�.

2.3. Ridge regression

Regularization for the least squares method has been proposed
to prevent overfitting or to solve ill-posed problems [21,22]. The
regularization for an optimization problem is to add a penalty
term, which represents additional information such as smooth-
ness or bounds of the norm of w, to the cost function (Eq.(4)).
Among regularization techniques being proposed, the Ridge regres-
sion [23] adds the l2-norm of the weight vector as the penalty
term. The l2-norm for a vector is denoted as ‖ • ‖2 and defined as
‖a‖2 = (|a1|2 + · · · + |aN|2)

1
2 , where a is a vector defined as a =

[a1, . . . , aN]�. It is defined as

min
w

1
2

J(w) + b ‖ w ‖2
2, (5)

where b ∈ R
+ is the regularization coefficient adjusting the effect of

the penalty term.

2.4. Lasso regression

Instead of l2-norm used in the Ridge regression, the Lasso regres-
sion [14] uses the l1-norm of the weight vector as the penalty term.
The l1-norm for a vector is denoted as ‖ • ‖1 and defined as ‖a‖1=
|a1| + · · · + |aN|. The optimization problem for Lasso regression is
defined as

min
w

1
2

J(w) + a ‖ w‖1, (6)

where a ∈ R
+ is the regularization coefficient. The Lasso regression

promotes the sparsity of the coefficient vector by minimizing the l1-
norm of the weight vector [24]. Optimizing the problem in Eq. (6)
needs iterative methods such as linear programming [25] or gradient
methods [26–28]. In this paper, optimizing the weight coefficients
was performed by applying the coordinate descent algorithm [29].

2.5. Group Lasso and sparse group Lasso regressions

The group Lasso regression [16] adds the sum of the l2-norm in
groups of the coefficients in the weight vector as the penalty term.
The optimization problem for the group Lasso is defined as

min
w

1
2

J(w) + c

Q∑
q=1

∑
g∈Gq

w2
g , (7)

where c ∈ R
+ is the regularization coefficient, Q is the number of the

groups, and Gq is the sets of the indexes of the weight coefficients in
the qth group.
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