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In the present study, 2DQSAR and3DQSARmodels and pharmacophore hypothesiswere evaluated for a series of
N-aryl-oxazolidinone-5-carboxamides to predict their HIV-1 protease inhibitory activity. The developed
QSARmodels were validated by external validation method, leave-one-out and leave-many-outcross validation,
Y-randomization method and applicability domain analysis. The primary findings of this study were that the
number of carbon atoms separated from any specific carbon atom by 2- and 7-bond distances, and the number
of fluorine atoms separated from any specific fluorine atom by a 5-bond distance in a molecule, altered the
compounds' inhibitory action on HIV-1 protease. Further, 3D QSAR study results indicated that the presence of
electrostatic and steric field descriptors in N-aryl-oxazolidinone-5-carboxamides significantly inhibited HIV-1
protease. The generated pharmacophore hypothesis of the compounds indicated the significance of the two
aromatic and three hydrogen bond acceptor features on HIV-1 protease's inhibitory activity. The proposed
model also provided a better understanding of HIV-1 protease's inhibitory activity on oxazolidinones and
could be used as guidance for the proposition of new anti-HIV agents.
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1. Introduction

HIV-1 (human immunodeficiency virus type-1) is the pathogenic
retrovirus and causative agent of AIDS or AIDS-related complex (ARC)
[1,2]. Acquired immunodeficiency syndrome (AIDS) is a dreadful
virulent disease still causing havoc worldwide. The shattering potential
of this viral disease has not been fully realized. The causative moiety of
this disease is human immunodeficiency virus (HIV), which is a retrovi-
rus of the lentivirus family [3]. Enzymes such as reverse transcriptase,
protease and integrase encoded by the gag and gag-pol genes of HIV
play important roles in viral replication cycle [4]. Highly active anti-
retroviral therapy (HAART) made dramatic impacts on mortality and
morbidity associated with HIV infection. However, current drug regi-
mens include major limitations such as long-term toxicity, drug resis-
tance and mutations that lead to development of resistance to HIV [5].
Therefore, development of a novel, specifically targeted antiviral thera-
py for HIV is imminent and meaningful in the anti-HIV research area.

Quantitative structure–activity relationship (QSAR) models have
found fertile grounds in the fields of chemical/biological chemistry
and related sciences, especially within the areas of computer aided
drug design. Various QSAR models have been developed using

characteristic parameters of molecular structures and experimental
property/activity of compounds to improve the optimal performance
of new chemicals and reduce the cost of exploring drugs.

The 2D QSAR studies [6–20], comparative molecular field analysis
(CoMFA) and comparative molecular similarity indices analysis
(CoMSIA) have been carried out among different groups of compounds
in rational drug design and related applications [21–33] of anti-HIV
activity of molecules. As part of on-going efforts to design novel
molecules with potent HIV-1 protease inhibitory activity, 2D and 3D
QSAR and pharmacophore mapping analysis were performed on N-
aryl-oxazolidinone-5-carboxamides [34] (Table 1) to correlate their
HIV-1 protease inhibitory activity with physicochemical, sterical and
electrostatic parameters, as well as pharmacophoric features. The
models were validated by dividing the dataset into training and test
sets, and by using several validation criteria to evaluate the predictive
ability of the established models. The established models could provide
some valuable information about structural modifications for designing
new possible lead compounds with higher activity.

2. Materials and methods

Molecular modelling studies were performed using the software
VLifeMDS 4.3 (a product of VLife Sciences Technologies Private Limited,
India: www.vlifesciences.com). Some of the statistical parameters were
calculated using QSARINS (www.qsar.it) [35].
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2.1. Biological data

Collection of high-quality and diverse data is commonly recom-
mended for establishing a QSAR model. Biological and chemical data
of 38 N-aryl-oxazolidinone-5-carboxamides derivatives from the work
of Yeung et al. (2013) [34] (Table 1) were selected. All the 38 com-
pounds in this study were synthesized by same method with the same
scaffold and their HIV-1 protease inhibitory activity was determined
by same method. This series of compounds was found to possess high
structural diversity and a sufficient range of biological activity. This
formed the rationale for selecting the 38 compounds for our present
study. The HIV-1 protease inhibitory activities used in the present
study were expressed as pKi = − log10Ki, where Ki is the micro-molar
concentration of the compounds producing 50% reduction in HIV-1
protease activity stated as the mean of at least two experiments.

2.2. Sketching of molecules

The 2D structures of the compounds in the respective series were
drawn in modelling software CS Chem Office 2004 using its drawing

tools. The structures were then checked for errors, cleaned up and
saved as .mol files, which were further transferred to VLife MDS 4.3
software, where the structures were converted from two-dimensional
form to three-dimensional form [19].

2.3. Energy minimization

The geometry of the 3D structure was optimized to local minima
by Merck Molecular Force Field (MMFF) by considering a distance-
dependent dielectric constant of 1.0, convergence criterion or a root-
mean-square (RMS) gradient at 0.001 kcal/mol Å and an iteration
limit of 10,000. Most stable structure for each compoundwas generated
and saved as .mol2 files for computing various physico-chemical and
alignment-independent (AI) descriptors [19].

2.4. 2D QSAR analyses

2.4.1. Calculation of descriptor (independent variable)
Various physico-chemical and AI descriptors of energy-minimized

molecules were determined using VLife MDS 4.3 software. Energy-
minimized geometry was used for calculating various 2D descriptors
(i.e., individual, chi, chiv, path count, chi chain, chiv chain, chain path
count, cluster, path cluster, Kappa, element count, estate number, estate
contribution, semi-empirical, hydrophilic–hydrophobic and polar
surface area).

Various AI descriptors were also calculated. Independent descriptors
were assigned the threemost important attributes for the calculation of
AI. The first attribute was ‘T’, characterizing the topology of molecule.
The second attribute was the atom type and the third attribute was
assigned to atoms involved in the formation of double or triple bonds.
The software then developed a model with a total of 200 physicochem-
ical descriptors and more than 700 AI descriptors.

The independent variables (i.e., 2D descriptors) were pre-processed
by removing the invariable (constant column), which resulted in a total
of 120 descriptors to be used for QSAR analysis. Variable exclusion was
done for a constant variable or near constant variable at paired correla-
tion [19]. The total number of descriptors involved in the study was
found to be high for the given series of compounds; hence significant
descriptors have been elaborated in results and discussion.

2.4.2. Training and test set selection
The training and test datasets were selected using the sphere exclu-

sion (SE) [36] and random selection methods. The dissimilarity values
(i.e., SE radius) used in the SE method were 2 and 2.5, and the most
active compound in the dataset was selected as the starting point
for building a sphere [37]. In the random selection method, ten trials
(70, 75, 80, 85 and 90%) were run. The trials were based on structural
diversity and a wide range of activity—the range of biological activity
of the test-set molecules was similar to that of the training set. Thus,
the test set chosen was a true representative of the training set [38].
The selection of training and test set was further justified by uni-
column statistics calculated for each case of the study.

2.4.3. Feature selection and model development
Among several search algorithms, feature selection procedures

based on stepwise (SW) forward–backward variable selection method
[39], genetic algorithms (GA) [40] and simulated annealing (SA) [41]
were found to be most popular for building QSAR models to explain
the features more effectively.

To build QSAR equations, the cross-correlation limit was set at 0.7,
the number of variables at 5 and the term selection criteria at q2. F
value was specified to evaluate the significance of the variable. The
variance cut-off was set at 0, with auto-scaling where the number of
random iteration was set at 100.

In the SW forward–backward variable selection algorithm, the
model was repeatedly altered from the previous version by adding or

Table 1
Structures and HIV-1 protease inhibitory activity of the oxazolidinone derivatives.

Compd. no. R1 R2 R3 R4 R5 R6 R7 pKi (nM)

1 H H H H OCH3 H iPr 10.000
2 F H H H OCH3 H iPr 10.080
3 F F H H OCH3 H iPr 10.180
4 CF3 H H H OCH3 H iPr 11.222
5 Ac H H H OCH3 H iPr 12.097
6 H Ac H H OCH3 H iPr 11.398
7 OCH3 H H H OCH3 H iPr 10.347
8 H H H H NH2 H iPr 9.276
9 F H H H NH2 H iPr 9.769
10 F F H H NH2 H iPr 9.638
11 CF3 H H H NH2 H iPr 10.377
12 Ac H H H NH2 H iPr 10.495
13 H Ac H H NH2 H iPr 9.735
14 F H H –O–CH2–O– H iPr 9.971
15 F F H –O–CH2–O– H iPr 10.071
16 CF3 H H –O–CH2–O– H iPr 10.796
17 Ac H H –O–CH2–O– H iPr 11.222
18 H Ac H –O–CH2–O– H iPr 10.796
19 F H H F OCH3 H iPr 10.155
20 F F H F OCH3 H iPr 9.465
21 CF3 H H F OCH3 H iPr 10.143
22 Ac H H F OCH3 H iPr 9.876
23 H Ac H F OCH3 H iPr 10.097
24 CF3 H H H OCH3 H iPr 8.000
25 Ac H H H OCH3 H iPr 8.699
26 H H H OCH3 H H iPr 8.420
27 H Ac H OCH3 H H iPr 9.076
28 F H H H H H cPr 9.590
29 F F H H OCH3 H cPr 9.237
30 H Ac H H OCH3 H cPr 9.097
31 H H H OCH3 H H 2-TP 6.622
32 F H H OCH3 H H 2-TP 6.724
33 H Ac H OCH3 H H 2-TP 7.530
34 H H F H F F 2-TP 6.769
35 F H F H F F 2-TP 6.795
36 H Ac F H F F 2-TP 6.775
37 H H H OCH3 H H 2-THF 7.377
38 F H H OCH3 H H 2-THF 6.824

2-TP = 2-thiophene, 2THF = 2-tetrahydrofuran.
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