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A facile yet efficient strategy was proposed by means of a combination of ultraviolet (UV) spectrophotometry
with multivariate calibration methods, through which 1,2-dinitrobenzene, 1,3-dinitrobenzene and 1,4-
dinitrobenzene in water samples could be simultaneously determined without any pre-separation process.
The competitive adaptive reweighted sampling combinedwith successive projections algorithm(CARS–SPA) ap-
proachwas used to diminish uninformative variables and select the important ones from spectral datameasured.
The multivariate calibration models were constructed by partial least squares (PLS-1) regression with high
accuracy, in which the coefficients of determination of prediction (Rpred2 ) were 0.9935, 0.9969, and 0.9971 and
the root mean square error of prediction (RMSEP) were 0.7850, 0.5411 and 0.5414 for 1,2-dinitrobenzene, 1,3-
dinitrobenzene and 1,4-dinitrobenzene, respectively. The optimized model was successfully applied to simulta-
neously determine the content of the three studied analytes in several real water samples with good recovery
close to 100%. Finally, the elliptical joint confidence region (EJCR) tests further confirm that the proposedmethod
has no proportional and constant error in the predicted concentrations, providing a statistic support for the
accuracy of the model. These results indicate that it is promise for UV spectroscopy coupled to the multivariate
calibration technique to establish a simple, quick, accurate and reliable analysis method for simultaneous deter-
mination of some nitroaromatic compounds in real environments. Also, the strategy proposed by the work will
advance the analytical methods used in the other complicated sample systems.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Nitroaromatic compounds are not only environment pollutants but
also explosively threatening to public security, which have serious
negative impact on all living creatures and water used for drinking,
household consumption, recreation, fishing, transportation, agriculture
and commerce [1]. Among the nitroaromatic compounds, dinitroben-
zenes (DNBs) are common contaminants of wastewater and the
environment, and most of them have been included in the US Environ-
mental Protection Agency (USEPA) list of priority pollutants [2,3]. The
three isomers of DNB, 1,2-dinitrobenzene (1,2-DNB), 1,3-dinitrobenzene
(1,3-DNB), and1,4-dinitrobenzene (1,4-DNB) are themost biorefractory,
persistent, and highly toxic dinitrobenzenes, which can induce methe-
moglobinemia and anemia on prolonged exposure in animals and in
humans [4–6] and can also cause testicular toxicity [7,8] and brainstem
damage [9]. As they have been used widely in industrial applications as

an intermediate in the chemical synthesis of some rubber chemicals, pes-
ticides, dyes, and explosives or additive explosives [10,11], they may
pour into environmental water with concentrations in range of ng L−1

to mg L−1 [12–14], leading to the contamination. Therefore, it is very
important to detect and monitor the three isomers of DNB in aqueous
environments.

Some analytical methods were already proposed for determining
some DNBs in water, urine and oil, for example, high performance
liquid chromatography (HPLC) for 1,3-DNB and nitrobenzene in water
[1], organic light emitting diode (OLED) for 1,4-DNB [15], gas
chromatography–mass spectrometry (GC–MS) for 1,2-DNB and 1,3-
DNB [16], the dispersive liquid–liquid microextraction based on the so-
lidification of floating organic droplet (DLLME-SRO) technique coupled
to gas chromatography electron capture detection (GC-ECD) for the
three isomers of DNB in differentwater samples [17], liquid chromatog-
raphy–mass spectrometry (LC–MS) for measuring 1,2-DNB, 1,3-DNB
and 1,4-DNB in water and oil [18,19]. In spite of these instrumental
techniques provide good sensitivity and excellent selectivity, most of
these techniques are time-consuming and expensive, require bulky

Chemometrics and Intelligent Laboratory Systems 154 (2016) 72–79

⁎ Corresponding authors. Tel./fax: +86 28 85412290.
E-mail address: xmpuscu@scu.edu.cn (X. Pu).

http://dx.doi.org/10.1016/j.chemolab.2016.03.022
0169-7439/© 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r .com/ locate /chemolab

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2016.03.022&domain=pdf
http://dx.doi.org/10.1016/j.chemolab.2016.03.022
mailto:xmpuscu@scu.edu.cn
http://dx.doi.org/10.1016/j.chemolab.2016.03.022
http://www.sciencedirect.com/science/journal/01697439


instrumentation and specialized operation [20–22]. Thus, it is highly de-
sired to further develop some facile methods or improve the existing
analytical techniques to realize faster and simpler determination on
the three isomers of DNB in environments.

As accepted, UV spectrophotometry is a simple, fast, cost-effective
and accurate analytical tool [23], which has been employed for quanti-
tative determination of a specific componentwith a high degree of accu-
racy. It has been widely used and become one of the most important
analytical methods in the modern laboratory [24]. However, the weak
selectivity in the spectrophotometric method limits its application in
complicated systems due to the strongly overlapped absorption bands
from the multiple components.

Multivariate calibration methods in chemometrics can use mathe-
matic separations to take place of chemical separations to solve the
problems existed in the spectral data of complicated mixtures, such as
collinearity, band overlaps and interactions [25,26]. Among these
methods, partial least squares (PLS) and principal component regres-
sion (PCR) [27–30] have been frequently used to assist experiments
with the purpose of directly determining the chemical components of
interest in a complicatedmixture without prior separation. The applica-
tion of these methods to the spectrometric data usually requires the se-
lection of spectral variables for the purpose of constructing well-fitted
calibration models [31], because a full-spectrum calibration model
probably contains a few uninformative variables and interfering ones,
which will have negative impact on the prediction ability of the
developed model. Therefore, some methods have been developed for
the variable selection, including genetic algorithm (GA) [32,33], itera-
tive PLS (iPLS) [34], uninformative variable elimination (UVE) [35],
Monte Carlo based UVE (MC-UVE) [36], variable iterative space shrink-
age approach (VISSA) [37], iteratively retains informative variables
(IRIV) [38] and margin influence analysis (MIA) [39], competitive
adaptive reweighted sampling (CARS) [40] and successive projections
algorithm (SPA) [41]. Recently, one combination of CARS and SPA
(CARS–SPA)was proposed for the spectral variable selection and exhib-
ited better performance through selecting and optimizing important
variables [42].

Based on the considerations above, we, herein, explore a novel
method with simple, rapid and accurate advantages to simultaneously
determine the 1,2-DNB, 1,3-DNB and 1,4-DNB in environment water
samples through a combination of UV–Vis spectrophotometry and PLS
coupled with CARS–SPA .

2. Methods

In this work, we suppose that the datamatrixX of size k× j, includes
k samples in rows and j variables in columns. Vector ywith orderm × 1
indicates the measured property of interest. Both X and y were mean-
centered, when modeling.

2.1. Partial least squares regression (PLS)

Partial least squares (PLS) is a powerful multivariate statistical tool
originally developed by Word [43,44] and has been successfully and
widely applied to the multicomponent quantitative determination of
mixtures up to now [45–49]. PLS involves a calibration step, in which
the relationship between the spectra and the component concentra-
tions is estimated from a series of standard samples, followed by a
prediction step where the component concentrations of the unknown
samples are estimated by using the calibration results [50]. The PLS-1
version is optimized for the determination of a single component of in-
terest at a time. During the model training step, the PLS-1 performs the
decomposition for the calibration data by an iterative algorithm, which
correlates the data with the calibration concentrations employing a so-
called ‘inverse’model [51]. This offers a series of regression coefficients
to be applied to a new sample. The PLS-1 method is well-known, along
with a detailed explanation about it is easily available [50,51].

2.2. The competitive adaptive reweighted sampling (CARS)

The CARS, which is proposed recently by Li [40] is a novel variable
selectionmethod through selecting the variableswith large absolute co-
efficients in a multivariate linear regression like partial least squares. Its
major idea is to apply the simple but effective principle ‘survival of the
fittest’ onwhichDarwin's Evolution Theory is based. A detailed explana-
tion of CARS can be found in ref. 40, and the principles of CARS are
summarized briefly as follows:

(1) Monte Carlo for model sampling, CARS sequentially selects N
subsets of wavelengths from N Monte Carlo sampling runs in
an iterative and competitive manner based on the importance
level of each variable. In each sampling run, a PLS-1model is con-
structed by utilizing the randomly selected samples not all the
samples in the calibration set.

(2) Exponentially decreasing function (EDF), EDF is employed to
retain the wavelengths which are of relatively large absolute re-
gression coefficients by force.

(3) Adaptive reweighted sampling (ARS), ARS is applied to further
exclude wavelengths by means with a competitive way and se-
lect the key wavelengths.

(4) Finally, cross validation is used to choose the subset with the
lowest root mean square error of cross validation (RMSECV).

2.3. The successive projections algorithm (SPA)

SPA is proposed as a variable selectionmethod by Araújo [41] which
exhibits the advantage of acquiring a small representative subset of full-
spectrum variables with minimum collinearity. SPA can be divided into
three phases: in the first phase, the spectral data of the calibration sam-
ples are arranged in a matrix Xcal of dimensions (Ncal × I) such that the
ith variable xi is associated to the ith column vector xi∈ℜNcal. Then,
these column vectors are subjected to a series of projection operations
that generate I chains of M variables, where M=min(Ncal−1, I) is the
maximum number of variables that can be included in a MLR model. A
new variable selected in each chainmust have themaximumprojection
value on the orthogonal subspace of the previous ones with respect to
all the remaining variables. The second phase consists of assessing the
candidate subsets of variables which were extracted from the chains
created in the first phase. For every one of those variable subsets, a
MLR model is calibrated and the root mean square error of prediction
(RMSEP) in the prediction set is also computed. The best subset of var-
iables is selected on the basis of the smallest RMSEP for the prediction
samples. The third phase consists of a backward elimination step in
order to discard uninformative variables, so that the parsimony of the
model could be improved. A detailed explanation of SPA is given
elsewhere [41,52–55]. It should be emphasized that the maximum
number of selected variables must be less than the number of calibra-
tion samples in the process of SPA calculated.

2.4. Statistical parameters

Several statistical parameters were selected to evaluate the perfor-
mance of the calibration model for the simultaneous determination of
1,2-DNB, 1,3-DNB and 1,4-DNB in mixture samples. These parameters
are the rootmean square error of cross validation (RMSECV) for calibra-
tion set in the cross validation process, rootmean square error of predic-
tion (RMSEP) and determination coefficient (Rpred2 ) for prediction set in
the prediction process. These parameters can be calculated through
Eqs.(1)–(3), respectively:

RMSECV ¼ 1
m−1

Xm
i¼1

Cact;i−Cpred;i
� �2" #1=2

ð1Þ
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