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Bilinear models are often used in the analysis of datasets from spectroscopy and chromatography. Whenever bi-
linear soft modeling approaches are applied, rotation ambiguities are ubiquitously present and they should be
considered. In this work, results obtained by the application of different methods like independent component
analysis (ICA), principal component analysis (PCA), and minimum volume simplex analysis (MVSA) are com-
pared with those obtained by multivariate curve resolution (MCR). In order to do this comparison, mutual infor-
mation (MI), Amari index (Al), and lack-of-fit (lof) parameters are used for the evaluation of the different

llgg{;‘:?c:gsémbiguity methods, and the corresponding areas or regions of feasible solutions (AFS) and their boundaries are investigated
MCR bilinear methods in each case. The results obtained by the MCR-BANDS method in the calculation of the extension of rotation am-
MCR-BANDS biguities are discussed and compared with those obtained by the FAC-PACK method, which has been recently
AFS proposed for the estimation of the whole range of feasible solutions.

FAC-PACK © 2015 Elsevier B.V. All rights reserved.

1. Introduction

Chemometric methods provide powerful tools to analyze multi- and
megavariate data from modern analytical instruments. Some of these
chemometric methods, in particular multivariate curve resolution
(MCR) methods, have been proposed for the resolution of chemical
data obtained from chromatography [1], spectroscopy [2], nuclear mag-
netic resonance [3], hyperspectral imaging [4], voltammetry [5], omics
microarray [6], and LC-MS [7]data, among others [8,9]. MCR methods
are a group of methods based on the fulfillment of a bilinear model
which attempt the extraction of the true underlying sources of chemical
variation using a minimum amount of prior assumptions about the pro-
cess under investigation. For the analysis of complex multi-component
mixture systems, they offer the possibility of resolution, identification,
and also quantification [10] of the different components present in an
unknown mixture, without needing their previous chemical and physi-
cal separation.

MCR chemometric methods have their intrinsic drawbacks, espe-
cially that they cannot assure encountering a unique solution to explain
the measured experimental variation in the data and that a range of fea-
sible solutions may be obtained by their application. Ambiguities appear
because different linear combinations of the component profiles fulfill-
ing the constraints of the system fit equally well the data [11]. Unfortu-
nately, the presence of rotation ambiguities and of non-unique solutions
decreases the reliability of MCR methods and makes their assessment
more difficult. The only way to reduce the extent of rotation ambiguities
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and to obtain solutions closer to true ones is by the application of addi-
tional constraints (soft or hard) which implies using more knowledge
about the data system, or also moving from bilinear modeling to
multilinear modeling [12].

Bilinear modeling methods like minimum volume simplex analysis
(MVSA), independent component analysis (ICA), principal component
analysis (PCA), and multivariate curve resolution-function minimiza-
tion (MCR-FMIN) have already been compared in previously published
papers [13,14]. MVSA initially was developed for satellite imaging indi-
vidual component (end member) resolution, and more recently, it has
been also proposed in analytical chemistry [ 15]. PCA considers the infor-
mation between the different components to be orthogonal or linearly
uncorrelated [16]. ICA assumes that the components are mutually sta-
tistically independent [17]. These assumptions are statistically different
(the latter is more restricted than the first), and therefore, the results
are different. In particular, ICA and PCA can be used for different pur-
poses like data preprocessing, exploration, classification, regression,
and resolution. All these methods have been proposed for analytical
chemistry purposes, and some authors have investigated whether one
method is better than the other. Different from these approaches,
based on statistical assumptions, multivariate curve resolution
methods, especially those based in alternating least squares (MCR-
ALS), use more natural and physically and chemically meaningful as-
sumptions by means of constraints, like non-negativity, unimodality,
closure, selectivity, or local rank, and by means of other constraints re-
lated to the data structure (like trilinearity or multilinearity) and find
an optimum solution from a least squares fitting convergence criterium
[18]. MCR-FMIN has been also proposed as a different way for multivar-
iate curve resolution and it is based on non-linear optimization
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algorithms using non-linear constraints [19]. MCR-FMIN uses PCA
scores and loadings to define the subspace of MCR solutions and rotates
them to fulfill the constraints of the system. Therefore, it is also interest-
ing to compare their solutions with those obtained by PCA and MCR-
ALS.

In order to evaluate the effect of rotation ambiguities associated to a
particular MCR solution and to measure its extent, Lawton and Sylvestre
[20] already proposed a first algorithm for determining the area of fea-
sible solutions (AFS) in two-component systems under the assumption
of non-negative spectra and concentration profiles. Borgen et al. [21] ex-
tended Lawton and Sylvestre's method to three component systems and
proposed a linear programming optimization method to calculate the
permitted ranges of pure component spectra using tangent and simplex
rotation algorithms. Rajké and Istvan [22] revised Borgen's study and
used computational geometry tools to draw Borgen plots of three-
component systems. Leger and Wentzell developed a dynamic Monte
Carlo SMCR method [23] which seeks to define the boundaries of allow-
able pure component profiles. For the calculation of the whole range of
feasible solutions, a systematic grid search method based on species-
based particle swarm optimization has been proposed for three-
component systems by H. Abdollahi et al [24,25]. A. Golshan et al.
have also developed a method that finds the simplex volume containing
all feasible solutions and facilitate the determination and visualization
of rotational ambiguities of four-component mixture [25].

R. Tauler developed the MCR-BANDS method [26] based on a previous
idea of P. Gemperline [27], for the calculation of the extension of rotation
ambiguities, based on the fast maximization and minimization of a func-
tion defined by the relative signal component contribution (SCCF) of each
component [11,23]. This method has no limitation for the number of com-
ponents and it uses the same constraints as those applied to find out the
MCR solution. It gives a simple evaluation of the extent of rotation ambi-
guity from the difference between the maximum and minimum values of
the SCCF function. Recently, Sawall et al. suggested a fast accurate algo-
rithm to find the AFS for two- and three-component systems based on
the use of a polygon inflation algorithm [28]. FAC-PACK is an interactive
IMATLAB toolbox for the computation of non-negative multi-component
factorizations and for the numerical approximation of the area of feasible
solutions using the inflation polygon algorithm [28].

In this work, FAC-PACK results are compared to those obtained by
MCR-BANDS, and with the solutions obtained by different bilinear
model methods such as PCA, ICA, MVSA, MCR-FMIN, and MCR-ALS. The
aim of this work is to get a deeper understanding of MCR methods and
evaluate their performance under different constraints. In addition, the
extension of rotation ambiguities associated to MCR solutions is investi-
gated by the MCR-BANDS and FAC-PACK methods. The comparison of re-
sults obtained by these two methods can help to evaluate the reliability of
their results and to get a deeper understanding of their principles.

2. Theory

Second-order data (a data matrix) generally can be decomposed by
bilinear model-based methods according to Eq. (1).

D=CS'+E=D*+E (1)

where D (1)) is the experimental data matrix corresponding to a bilinear
system with I different samples and ] different variables., C (LN) is the
contribution of the N components in each sample, S (J,N) is the pure re-
sponse matrix of the N components, E (1,])is the matrix associated to
noise or experimental error. Given the data matrix D, the aim of bilinear
model is to determine the two factor matrices C and S.

The concept of rotation ambiguities is explained using the following
reasoning. For any non-singular matrix T (N,N), the identity matrix I =
T~ 'T can be inserted into Eq. (1) as the following equations:

D' = CT'TS" = ChewShew 2

where

Chew =CT™! and ST

new

=TS' 3)

According to Eq. (3), any rotation of factor matrices, C and S”, using a
non-singular T matrix, will produce a new valid solution of the bilinear
model. Therefore, in absence of enough constraints, an infinite number
of rotations and solutions are possible.

3. Principal component analysis (PCA)

PCA provides a mathematical and very efficient way to solve the bi-
linear model and perform the matrix decomposition given in Eq. (1).
PCA decomposes the measurement matrix D into the scores Cpca .and
loadings Spca orthogonal factor matrices, and a reduced number of com-
ponents are selected which explain maximum data variance. The aim of
the method is to maximize the explained variance in the data with a
minimum number of components. Due to the applied constraints dur-
ing the PCA bilinear decomposition (orthogonality of scores and load-
ings, normalization of loadings, and maximum variance), score and
loading profiles do not resemble in general the true variance sources
but a linear combination of them fulfilling the applied constraints.
True variance source profiles do not fulfill for instance the requirement
of orthogonality and they are overlapped, and in many chemical and
physical systems, profiles should be non-negative.

4. Independent component analysis (ICA)

The aim of ICA is the decomposition of the measured multivariate
signals into statistically independent component contributions with a
minimum loss of information. ICA assumes that the mixing vectors in
C are linearly independent and that the components in S are mutually
statistically independent, as well as independent of noise components.
This goal is equivalent to finding an unmixing matrix W that satisfies

WX = s 4

where § is the estimation of the S. The main task of ICA is to find out the

unmixing matrixW based on the principle that the output ST should be
as independent as possible. Thus, this task turns into an optimization
problem under the constraints of independency, which is generally
reflected by non-Gaussian profiles. MF-ICA algorithm [29] applied in
this work applies non-negativity constraints to the signals.

5. Minimum volume simplex analysis (MVSA) method

MVSA also considers that the underlying mixing model is bilinear,
i.e. that the measured spectral vectors are a linear combination of signa-
tures (spectra) of pure components. MVSA is a method that finds the
pure components (end members) by fitting the data to a minimum vol-
ume simplex, under some constraints, such as having for every pixel no
less than zero abundance fractions (non-negativity constraint) and that
their sum should be equal to one (closure). The MVSA method starts
with an estimate of the purest spectra profiles, obtained by the vertex
component analysis (VCA) [30] method, which is a pure variable detec-
tion method based in an iterative algorithm. MVSA does not use a least
squares approach, but a sequential quadratic programming (SQP)
method, based on a quasi-Newton non-linear optimization procedure
under linear constraints [31]. MVSA method provides estimations of
the pure spectra S of the system. Concentration profiles C should be cal-
culated by least squares subsequently.
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