
Quantitative determination on binary-component polymer bonded
explosives: A joint study of ultraviolet spectrophotometry and
multivariate calibration methods

Tao Lu a, Zhining Wen a, Lu Wang a, Xuan He b, Yuan Yuan c, Minqi Wang a, Yihuan Zhao a, Menglong Li a,
Xuemei Pu a,⁎, Tao Xu b,⁎⁎
a College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
b Institute of Chemical Materials, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
c College of Management, Southwest University for Nationalities, Chengdu 610041, People's Republic of China

a b s t r a c ta r t i c l e i n f o

Article history:
Received 28 May 2015
Received in revised form 13 July 2015
Accepted 11 August 2015
Available online 19 August 2015

Keywords:
Ultraviolet spectrophotometry
Partial least square regression
Successive projection algorithm
Multiple linear regression
Explosives
Quantitative analysis

Explosive determination is of great importance in national defense and security fields. Simple, quick and reliable
analytical techniques have been highly demanded in the field. In this work, we proposed a novel method for
simultaneous determination of pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX),
and 2,4,6-trinaitrotolunene (TNT) in binary-component polymer bonded explosive (PBX) samples by means of
a combination of ultraviolet (UV) spectrophotometry with multivariable calibration methods. An orthogonal
array design (DAD)was employed to construct the calibration set, which contains 27 reference samples. The cal-
ibration models were constructed using Partial Least Square regression (PLS-1) and Multiple Linear Regression
(MLR). The variables were selected by the Successive Projection Algorithm (SPA) in MLR model. The predictive
ability of the optimized models was validated by a test set including 18 samples. Finally, the two optimized
models were successfully applied to simultaneously determine the content of PETN, RDX and TNT in five real
binary-component PBX samples. Satisfactory results were obtained for the two models, in which the recovery
yields were close to 100% for all the analytes. The computed elliptical joint confidence region (EJCR) further
shows that the twomodels have no proportional and constant errors in the predicted concentrations. In addition,
the statistical analysis indicates that MLR model with reasonable variable selection (SPA-MLR) could exhibit a
slight superiority toward PLS-1 in the system. In a word, UV-spectroscopy in combination with multivariable
calibration techniques has high potential to be a simple, quick and accurate analysis method for explosive deter-
mination in practice.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-
triazine (RDX) and 2,4,6-trinaitrotolunene (TNT) are three of the most
widely used secondary explosive ingredients in ammunition formula-
tion and plastic explosives [1–4]. Also, they are organic explosives that
contain multi-nitro functional groups (-NO2). The binary-component
polymer bonded explosives (PBXs), which contain RDX-TNT, TNT-
PETN or PETN-RDX, respectively, have been commonly used in military
andmany explosive-based terrorist attacks in recently years [5,6]. Thus,
it is very important to develop analytical methods to determine their
contents rapidly and accurately in various explosive samples.

Up to now,many analytical methods have been proposed for detect-
ing trace explosives in the field. Common analytical methods for the
determination of explosive include mass spectrometry (MS) [7,8], ion
mobility spectrometry (IMS) [9–11],gas chromatography (GC) [12,13],
high performance liquid chromatography (HPLC) [14,15] along with
gas chromatography-mass spectrometry (GC-MS) [16], and liquid
chromatography-mass spectrometry (LC-MS) [17]. In spite of these
instrumental techniques provide good sensitivity and excellent selec-
tivity, they require expensive and large equipment and also involve
time-consuming procedures [1]. Therefore, it is necessary to develop
novel methods or improve the existing analytical techniques to enable
faster, more sensitive, inexpensive and simpler determinations to facil-
itate the determination of explosives.

As is well-known, ultraviolet (UV) spectrophotometry is a simple,
rapid, inexpensive and accurate analytical technique [18], which has
been used for the quantitative analysis of a specific compound with a
high degree of accuracy. However, UV spectrophotometry has poor
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selectivity for some samples, which exhibit strongly overlapped absorp-
tion bands resulted from theirmulticomponent. Consequently, it cannot
be directly applied for the simultaneous analysis of multicomponent in
complicated samples.

Nowadays, multivariate calibration methods have been developed
and used formulticomponent systems in the quantitative spectrometry.
Multiple linear regression (MLR), partial least squares (PLS) and principal
component regression (PCR) [19–21] have been commonly used to assist
experiments in order to directly determine the chemical components of
interest in a complicated mixture. For the purpose of constructing well-
fitted models, these methods in general require the selection of spectral
variables [22], which could improve their predictive ability [23–25].
Compared to PLS and PCR regression models, which lack of a physical
meaning for latent variables, MLRmodes are simpler and more amena-
ble to chemical interpretation model since it is based on real variables.
However, MLR usually requires the selection of a suitable spectral vari-
ables for ensuring proper numerical conditioning and minimizing the
propagation of random errors [26]. As a result, to resolve this problem,
Araújo et al. proposed a novel variable selection strategy for selecting a
subset of variables with aminimummulti-collinearity and suitable pre-
diction power for MLR calibration, that is, the “successive projection
algorithm” (SPA) [27,28]. In many applications, SPA-MLR models are
comparable to full-spectrum PLS or PCR ones in terms of prediction
ability, such as UV–Vis spectrometry [20], NIR spectrometry [29],
spectrofluorimetry [30] and electrochemical method [31]. Moreover,
SPA has also been compared with the genetic algorithm [27,28],
which is a popular tool for variable selection in themultivariate calibra-
tion [32,33].

Based on the considerations above, we, herein, established a novel,
simple, quick and accurate method to simultaneously determine PETN,
RDX and TNT in polymer bonded explosive samples by UV spectropho-
tometry coupled to SPA-MLR and PLS-1 methods. Satisfactory results
were obtained.

2. Chemometric methods

2.1. Partial least square regression (PLS)

Partial least squares (PLS) is a multivariable calibration method
originally developed by Word [34,35] and has been successfully ap-
plied in spectrophotometric analysis of multicomponent mixtures
so far [36–40]. PLS involves a calibration step in which the relation
between the spectra and the component concentrations is estimated
from a series of standard samples, followed by a prediction step where
the component concentrations of the unknown samples are estimated
by using the calibration results [41]. The PLS-1 version is optimized for
the determination of a single component of interest at a time. During
the model training step, The PLS-1 performs the decomposition for the
calibration data by an iterative algorithm, which correlates the data
with the calibration concentrations employing a so-called ‘inverse’
model [42]. This offers a series of regression coefficients to be applied to
a new sample.

However, the crucial step in PLS-1 algorithm is to accurately select
the optimum number of factors, which determinate the predictive abil-
ity of the calibrationmodel. If the number of factors used in themodel is
small, it will cause under fitting. While the number of selected factors is
too large, it will lead to over-fitting [43]. Therefore, a full cross-
validation called leave-one-out cross-validation (LOO-CV) was utilized
to solve the problem [42]. The main principle of LOO-CV was to leave
out one sample from the calibration set in each iteration and perform
the PLS-1 calibration with the remaining samples. The obtained PLS-1
model was used to predict the concentration of the hold-out sample.
This procedure was iteratively repeated until each sample in the cali-
bration set had been left out once. Finally, the known concentrations
of the analytes in each reference sample were compared with the pre-
diction concentrations of the analytes in each sample and the root

mean square error of cross-validation (RMSECV) was calculated in
terms of Eq. (1):

RMSECV ¼ 1
m−1

Xm
i¼1

Cact;i−Cpred;i
� �2" #1=2

ð1Þ

where Cpred, i is the predicted concentration of the interested component
in ithmixture through themodel, Cact, i is the real concentration, andm is
the number of samples in the calibration set.

In principle, the optimum number of factors should yield minimum
RMSECV. However, sometimes the number of factors with minimum
RMSECV would lead to some over-fitting. Thus, a better select criterion
is that the RMSECV value of the model with the optimum number of fac-
tors is not significantly greater than the minimal RMSECV. The F-statistic
was used to make the significance determination by means of a compar-
ison of the calculated F-value (F=1.31)with the cutoff value (α=0.25),
which was proposed to be a good criterion by Haaland and Thomas [42].

2.2. Successive projection algorithm-multiple linear regression (SPA-MLR)

SPA-MLR can be divided into three phases: in the first phase, the
spectral data of the calibration samples are arranged in a matrix Xcal of
dimensions (Ncal × I) such that the ith variable xi is associated to the
ith column vector xi ∈ ℜNcal. Then, these column vectors are subjected
to a series of projection operations that generate I chains ofM variables,
whereM =min (Ncal − 1, I) is the maximum number of variables that
can be included in aMLRmodel. A new variable is selected in each chain
according to the selected variable must have the maximum projection
value on the orthogonal subspace of the previous ones from among all
the remaining variables. The second phase consists of assessing the can-
didate subsets of variables whichwere extracted from the chains created
in the first phase. For every one of those variable subsets, a MLRmodel is
calibrated and the root mean square error of prediction (RMSEP) in the
test set is also computed. The best subset of variables is selected on the
basis of the smallest RMSEP for the validation samples. The third phase
consists of a backward elimination step in order to discard uninformative
variables, so that the parsimony of the model could be improved. A de-
tailed explanation of SPA-MLR is given elsewhere [28,44–47]. It should
be emphasized that the maximum number of selected variables must
be less than the number of calibration samples in the process of SPA
calculated.

2.3. Statistical parameters

Several statistical parameters were selected to evaluate the perfor-
mances of the PLS-1 and SPA-MLRmodels for the simultaneous determi-
nation of PETN, RDX and TNT in mixed explosive mixtures. These
parameters are the root mean square error of calibration (RMSEC),
root mean square error of prediction (RMSEP), relative error of calibra-
tion (REC%), relative error of prediction (REP%) and the correlation co-
efficient of determination (R2). These parameters are calculated for
both the calibration and test sets in terms of Eqs. (2)–(4):

RMSE Cor Pð Þ ¼ 1
m−1

Xm
i¼1

Cpred;i−Cact;i
� �2" #1=2

ð2Þ

RE Cor Pð Þ ¼ 100
C

1
m−1

Xm
i¼1

Cact;i−Cpred;i
� �2" #1=2

ð3Þ

R2 ¼ 1−

Xm
i¼1

Cact;i−Cpred;i
� �2

Xm
i¼1

Cact;i−C
� �2

ð4Þ
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