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Ionic liquids (ILs) have beenwidely used inmanyfields due to their unique physicochemical properties, and even
they were considered as green solvents. However, the recent researches showed that ILs might bring potential
risk to environment and humans. In this work, genetic function approximation (GFA) and least squares support
vectormachine (LSSVM)modelswere developed for predicting the cytotoxicity of a great variety of ILs, including
9 types of cations and 44 types of anions, to Leukemia Rat Cell Line (IPC-81) based on the structural descriptors
calculated from the combination of cations and anions. Seven descriptors were selected by GFA to develop the
linear QSAR model. According to the discussion of descriptors, the cation structure was the main factor of the
toxicity which mainly depends on the hydrophobicity and space structure of cations. The LSSVM model was
built to predict accurately the cytotoxicity of ILs to capture the nonlinear nature. The rigorous internal and
external validation and applicability domain (AD) were performed to verify the reliability and predictability
for GFA and LSSVMmodels. The results indicated that both models could be used for estimating the cytotoxicity
of new ILs to IPC-81, and the discovered key structural characteristics could provide reference information for
designing and synthesizing safer ILs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Ionic liquids (ILs) can be defined as ionic molten salts, whose melting
points are below 100 °C and are completely formed by organic/inorganic
anions and organic cations. They have attracted extensive attention in the
past decades due to their unique physicochemical properties, such as low
vapor pressure, non-volatility, non-flammability, high thermal and elec-
trochemical stability and strong dissolution ability for a wide range of
chemicals. Therefore, they have been regarded as “green or sustainable
solvents” that replace the conventional volatile organic solvents [1–6].
The most interesting part of ILs is that their structure characteristic,
which provides a very flexible design as long as the combination of cat-
ions and anions is changed. Thus, the physical and chemical properties
of ILs can be customized by reasonably designing and modifying the
different combinations of cations and anions [7]. Such advantage brings
up a wide variety of ILs with more excellent performance. So, a variety
of ILs are presented in diverse fields, such as organic synthesis [8–10], ca-
talysis and biocatalysis [11,12], electrochemistry [13,14], solar cells [15,
16], biomass processing [17,18], drug delivery [19,20] and even in the
reprocessing of nuclear waste [21,22].

Although ILs have been widely used as green solvents, the potential
consequent risks should not be neglected in the process of industrial
production and application. With the increasing industrial manufacture

and application, theywould bemore andmore likely released into the en-
vironment. Because of thenon-volatility of ILs, andmost of themarehard-
ly decomposed by microorganisms, they would be bioaccumulative
[23–27].What isworse, the high chemical and thermal stabilitywould in-
tensify the bioaccumulation. They may induce the serious pollution and
bring potential risk for human beings and animals [28,29]. Therefore, it
is necessary to conduct the toxicity assay before application. At present,
Leukemia Rat Cell Line (IPC-81) is frequently used for the cytotoxicity
assays of ILs [30]. However, these common toxicity assays are time-
consuming, costly and resource-wasted because of the enormous number
of ILs. So, it is necessary to establish a convenient and available approach
to estimate the toxicity of ILs without experimental operation.

Quantitative structure–activity relationship (QSAR) is based on
the assumption that the change in observed activity of compounds
is reflected by the change in microscopic molecular structures [31].
The major objective of QSAR modeling is to obtain a reliable and ac-
curate mathematical model that correlates the biological activity
with several descriptive parameters, which derive from the molecu-
lar structure of compounds, and can be used for predicting the activ-
ity of compounds that are newly synthesized and yet have not been
tested. On the other hand, QSAR model can reveal the intrinsic rela-
tionship between the information of molecular characteristic and
biological activity and provide some insights into major factors in
order to better understand the mechanism of action [32,33]. Now,
QSAR models have been widely used for predicting the activity of
compounds, including the toxicity of ILs.
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Torrecilla et al. [34,35] reported the QSARmodels that estimated the
cytotoxicity of 153 ILs to IPC-81 using empirical formulas (element
composition) and molecular weights as descriptors for performing the
principal component analysis (PCA). 12 principal components were
used to build themultiple linear regression (MLR), radial basis (RB) net-
work, and multilayer perception (MLP) neural networks (NN) models
with the square of correlation coefficient R2 of 0.867, 0.861 and 0.982,
respectively. Then, they also developed QSAR models that included
MLR and NN to predict the toxicity of 96 ILs by COSMO-RS descriptor.
Fatemi et al. [36,37] constructed the QSTR models based on MLR and
MLP NN for correlating the cytotoxicity to IPC-81 of 50 ILs using 6
descriptors selected by genetic algorithm (GA). Cytotoxicity estimation
of ILs to IPC-81 was explored again by their group using 2D and 3D
structural descriptors, GA-MLR and MLP NN models were developed
for the prediction of the toxicity of ILs. Yan [38] obtained a linear
QSAR model for predicting the toxicity of 173 ILs to IPC-81 using topo-
logical indexes proposed by themselves. Cruz-Monteagudo et al. [39,
40] introduced a Classification and Regression Trees (CART) classifier
to enable the prioritization of the cytotoxicity to IPC-81 of ILs, with
81% of accuracy and 75% of sensitivity. Besides, they applied the qualita-
tivemethod of network like similarity graph (NSG) tomine the relevant
structure–cytotoxicity relationship as a complement of previous find-
ings. Das and Roy [41] reviewed the researches of QSPR/QSTR models
to different microorganisms including IPC-81 for designing greener
and safer ILs. The researches above presented good statistical per-
formance; however, few data for estimation of the cytotoxicity of ILs
were described and the NN models including RB NN and MLP NN
were relative complex.

The present work was aimed to develop a novel QSAR model for
predicting the cytotoxicity of a wide variety of ILs to IPC-81 based on
the descriptors calculated by the combination of cation and anion struc-
tures, and find out the key structural features that affect the cytotoxicity
of ILs. In this study, self-organizing map (SOM) network was employed
to divide the dataset into the training set and the test set, genetic func-
tion approximation (GFA) was used for selecting the best subset of de-
scriptors and developing the linear model. Besides, the least squares
support vectormachine (LSSVM)modelwas built to capture the nonlin-
ear nature existing betweenmolecular structures of ILs and the cytotox-
icity to IPC-81 by the descriptors selected by GFA. Moreover, models
could contribute to gain a profound insight intomode of cytotoxicity ac-
tion and provide theoretical guidance for designing and synthesizing
safer and greener ILs.

2. Materials and methods

2.1. Datasets

The structures of 270 ILs and their corresponding cytotoxicity data to
IPC-81 were taken from the UFT/Merck Ionic Liquids Biological Effects
Database—center for environmental research and sustainable technolo-
gy [42] and literatures [43,44]. The cytotoxicity values, denoting as the
half maximal effective concentration (EC50, in μmol/L) were converted
into the form of logarithm (logEC50). The dataset of ILs and their exper-
imental cytotoxicity valueswere listed in Table 1S (Appendix A, Supple-
mentary data). In the present work, the types of cations including
imidazolium (IM), pyridinium (Py), pyrrolidinium (Pyr), ammonium
(N), piperidinium (Pip), morpholinium (Mor), phosphonium (P),
quinolinium (Quin) and sulfonium (S) were listed in Table 1. Also,
the structures of 44 types of anions including organic and inorganic
were described in Table 2.

2.2. Molecular descriptors

In order to relate the cytotoxicity to IPC-81 to the structures of their
ionic constituents by cation and anion-based descriptors, the cation and
anion descriptors for each ionic liquid should be calculated separately.

The structures of all cations and anions of 270 ILswere drawn separately
by ACD/ChemSketch software [45] and were initially optimized by the
molecular mechanics (MM+) force field. A more precise optimization
was performed with a semi-empirical PM3 method in the HyperChem
Program 8.0 [46]. In the process, the corresponding total ionic charge
was labeled for each cation and anion. The structures of ILs were opti-
mized by the Polak–Ribiere conjugate gradient algorithm with a root
mean square gradient of 0.1 and 0.01 kcal/(mol · Å) as stop criterion
for MM+ and PM3, respectively. Finally, the output files of HyperChem
geometry optimization were used as input information of Dragon soft-
ware 6.0 [47] to calculate all 29 types of molecular descriptors for cat-
ions and anions. As a result, 2182 and 2114 descriptors were obtained
for cations and anions, respectively. So, it is necessary to prescreen
those descriptors to reduce the redundant and non-useful informa-
tion. The prescreen criteria are: (1) removing the constant or near
constant descriptors; (2) eliminating descriptors with relative stan-
dard deviation less than 0.05; and (3) for the absolute pairwise cor-
relation coefficients among these descriptors larger than or equal to
0.95, one of them was deleted randomly due to multicollinearity. Fi-
nally, the descriptors were decreased to 745 and 436 for cations and
anions, respectively.

Table 1
The diverse types of cations in the present work.

Type Structure Numbers

Imidazolium 100

Pyridinium 68

Pyrrolidinium 23

Ammonium 26

Piperidinium 15

Morpholinium 25

Phosphonium 6

Quinolinium 5

Sulfonium 2
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