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Indirect hard modeling (IHM) is a physically motivated spectral analysis principle. It utilizes nonlinear
spectral hard models generated by peak fitting of the pure spectra. This approach allows the consideration of
various nonlinear effects such as peak variations or spectral shifts. Compared to established methods, less
calibration samples are required and basic calibration transfer is performed inherently. To extend the
applicability of IHM, which currently requires knowledge of the pure component spectra, two methods for
the identification of pure spectra are presented in this work. These methods work automatically on a
mathematically objective basis and do thus not depend on the expertise of the user. As IHM relies on an
underlying physical picture of the spectra, the relevant information in the input data is exploited very
efficiently especially for selective spectra, and nonideal spectral behavior is captured throughout the
identification process. Compared to established SMCR methods the number of required spectra is reduced.
The first method, complemental hard modeling (CHM), is introduced for the case that a single pure spectrum
is unknown. The method is based on a deconvolution approach and only requires a single mixture spectrum
as input data. The second method, hard modeling factor analysis (HMFA), is conceptually related to SMCR
methods. It allows the identification of all pure spectra in a completely unknown mixture from a limited set
of mixture spectra. As shown in this work, even highly collinear data can be employed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Today, spectroscopy is an established noninvasive measurement
technique utilized in diverse industrial applications. For the analysis of
the spectral raw data, mainly linear multivariate methods such as
principal component analysis (PCA) or partial least squares (PLS) are
applied [1]. However, most chemical systems of practical interest are
not ideal and behave nonlinearly. Examples for nonlinearities are peak
shape variations due to molecular interactions or shifts of the full
spectrum due to variations of the spectrometer adjustments. These
effects can only be modeled to some extent, e.g. by application of
laborious preprocessing or calibration transfer methods [2,3].

To overcome these limitations the authors have introduced a novel
analysis method, called indirect hard modeling (IHM), which combines
the advantages of multivariate linear methods with those of hard
modeling techniques [4,5]. In this context, hardmodeling techniques are
understood as methods that exploit the physical structure of spectra by
modeling thedatawithpeak shaped functions, i.e. by peakfitting,which
was first applied to spectroscopy in 1953 [6]. A good overview of recent
methods is given in [7–9]. IHM represents a mixture spectrum as a
weighted sum of parameterized pure component models built by hard

modeling. The pure component weights are estimated in a nonlinear
model fit that takes nonlinear effects into account by allowing for a
constrained variation of the hardmodel parameters. This allows the use
of a simple linear calibration model with high extrapolation capabilities
to predict the concentrations. IHM has been successfully applied in
several fields ranging from ATR measurements in reactive mixtures to
1D-Raman measurements in liquid mixtures [10–12].

A requirement of IHM is the availability of all pure component
spectra. If some pure components are not known or cannot be
measured at acceptable cost, they have thus to be identified with
suitablemethods such as selfmodeling curve resolution (SMCR). SMCR
provides a useful tool for exploring multicomponent phenomena in
complex systems in case that only limited a priori information on the
data is available [13]. Two-waymultivariate data changing due to some
physical reason over time is deconvolved into factors for single species.
Spectral data is thus factorized in concentration profiles and pure
component spectra. For this reason SMCR can be directly utilized for
the purpose of identifying pure component spectra. In a comprehen-
sive review article [13], Jiang, Liang and Ozaki divide SMCR methods
into two groups: unique resolution methods such as evolving factor
analysis (EFA) [14] or window factor analysis (WFA) [15] and rational
solutionmethods such asmultivariate curve resolution (MCR-ALS) [16–
18] or SIMPLISMA [19]. To increase the uniqueness of the solution, both
groups apply certain constraints to the data. Unique resolution
methods require the user to define unique feature regions. These are
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either selective wave number regions where only a single component
contributes to the spectrum or zero concentration regions where
certain components do not exhibit spectral intensities. To some degree
the quality of the results is thus dependent on the expertise of the user.
For rational solution methods time series data with preferably weakly
correlated concentration profiles are most suitable, as the accuracy of
the solution depends on the degree of collinearity among the pure
component profiles [13]. Somemethods also require initial guesses for
either the concentration profiles or the pure component spectra. To
further enhance the mathematical uniqueness of the solution, non-
negativity or unimodality constraints can be imposed [20]. This
requires generic knowledge about the variables and a certain data
structure. For multivariate measurements on mixtures with varying
compositions this is naturally satisfied [13]. The user-friendly
implementation of rational solution methods has made it a common
practice in real-world chemical applications [13].

In this work, two novel methods for the identification of unknown
pure component spectra are presented that work automatically on a
mathematically objective basis. Both methods are based on the IHM
approach, i.e. they exploit physical information in the data by using
peak-based nonlinear spectral hard models. For this reason they are
especially suited for selective spectra and can even be applied to
highly collinear data. The first method, complemental hard modeling
(CHM), is suited for the identification of a single unknown pure
spectrum in an otherwise completely known mixture. Here, a single
mixture spectrum is sufficient as input. The second method, hard
modeling factor analysis (HMFA), permits the identification of all pure
component spectra even from few unordered data with highly
correlated concentration profiles. Initial guesses for concentration
profiles or pure spectra are not required, and no constraints have to be
selected. Thismethod can be applied to all systems that exhibit at least
one “distinctive” peak per component, i.e. a peak that does not occur
in any other pure component spectrum. However, the distinctive peak
is not required to stand free but may be highly overlapped even by
peaks of other pure components. This distinctive peak is automatically
identified by HMFA.

After a short introduction to IHM in Section 2 the CHM and HMFA
methods are presented in detail in Section 3. In Section 4, the methods
are validated with three increasingly challenging data sets: an
uncorrelated time series, a highly correlated time series, and a very
small data set containing only 8 independent measurements. Both, the
quality of the identified spectra and the concentrationprediction quality
of IHM using the identified spectra are assessed. Finally, conclusions are
given in Section 5.

2. Indirect hard modeling

The quantitative spectral analysis method IHM [4,5] proceeds in
two steps, as depicted in Fig. 1. In the first step, a phenomenologically
motivated nonlinear spectral model is fitted to the data to correct the
nonlinear effects and to determine the pure component weights. A
linear calibration model calculates the concentrations from the
weights in the second step. Both, the phenomenological nonlinear
spectral model and the calibration model are built during calibration.
This process requires that all pure spectra are available, the number of

pure components is known and at least one calibration mixture is
measured. Thewhole procedurewill be described inmore detail in the
following.

The nonlinear mixture model

X m;w; θð Þ ¼ B m; θBð Þ þ ∑
K

k¼1
wkSk m; θP;k; θS;k

� � ð1Þ

is composed of a weighted sum of K parameterized pure component
submodels Sk dð Þ and a baseline function B dð Þ, which usually is a
polynomial and thus linear in the parameters. Besides the pure
component weights there are 3 sets of model parameters. The baseline
parameters θB, the peak parameters of the pure component models θP,k,
and the shift parameters θS,k, which serve to shift the individual pure
component spectra as a whole. The vector θ concatenates all model
parameters, i.e. θ=(θBT ,θPT, θST)Twith θP=(θP,1T ,…, θP,KT )TandθS=(θS,1T ,…, θS,KT )T.
The pure component models are generated by hard modeling during
calibration and can be expressed by

Sk m; θP;k; θS;k
� � ¼∑

Lk

l¼1
V l m−θS;k;ψk;l
� � ð2Þ

as sums of LkVoigt functions V l dð Þ. Each peak function is parameterized by
four parameters ψk , l=(αk,l,βk,l,γk,l, ωk ,l)T, the width γ, the height α, the
position ω, and the Gauss–Lorentz weight β. Except for the height α, all
peak parameters are nonlinear parameters of the spectralmodelX(·). The
vector θP,k=(ψk,1

T ,…, ψk,Lk
T )T concatenates all individual peak parameters.

In summary, IHM builds the mixture spectrum hardmodel (Eq.(1))
in an indirect way by fitting ready-made hard models of each pure
component spectrum. This explains the name of the method.

The clear attribution of all peaks to the individual components
encourages a multivariate analysis of the pure component weights w,
which are influenced by the full wave number range, rather than a
univariate analysis of certain characteristic peaks. The weights are
estimated by fitting the spectral mixture model X ν;w; θð Þ to the
mixture spectrum xεℝ1Xnν using a nonlinear least-squares approach:

min
w;θ

∑
nm

i¼1
xi−X νi;w; θð Þ½ �2: ð3Þ

During optimization, nonlinear effects such as peak variations or
spectral shifts are taken into account by allowing for a constrained
variation of the model parameters θP,k and θS,k, k=1,…,K. To minimize
the number of flexible parameters in this correction step, the relevant
parameters are identified automatically by an algorithmic procedure
as part of the solution of Eq. (3) [21]. Themodeling of nonlinear effects
is an important correction step for the pure component weights in
many practical situations. A typical example is spectrometer replace-
ment. Due to slight differences in the optical units, often spectral shifts
are induced. If unshifted pure component spectra are fitted to the data,
the pure component weights are incorrect as the spectra do not fit
properly. Consequently a wrong mixture composition is predicted. If
however the spectra are shifted in the correct manner by adapting the
nonlinear shift parameters θS,k with k=1,…, K the pure component
weight is corrected.

Fig. 1. Two-step procedure of indirect hard modeling (IHM).
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